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A B S T R A C T

We propose a new formulation for controlling inventory in a two-echelon distribution system consisting of one
warehouse and multiple non-identical retailers. In such a system, customer demand occurs based on a normal
distribution at the retailers and propagates backward through the system. The warehouse and the retailers have
a limited capacity for keeping inventory and if they are not able to fulfill the demand immediately, the demand
will be lost. All the locations review their inventory periodically and replenish their inventory spontaneously
based on a periodic Randomized Ordering (RO) policy. The RO policy determines order quantity of each location
in each period by subtracting corresponding on-hand inventory at the beginning of that period from a de-
terministic decision variable. We propose a mathematical model to find the optimal RO policies such that an
average systemwide cost consisting of ordering, holding, shortage, and surplus costs is minimized. We use the
first and second moments of on-hand inventory as auxiliary variables. A remarkable advantage of this model is
calculating the immediate fill rate of all locations without adding new variables and facing the curse of di-
mensionality. Using two numerical examples with stationary and non-stationary demand settings, we validate
and evaluate the proposed model. For validation, we simulate the optimal RO policy and demonstrate that the
optimal first and second moments of on-hand inventory from our model reasonably follow the corresponding
moments obtained through simulation. Furthermore, we evaluate the RO policy by drawing a comparison be-
tween the optimal RO policy and the optimal well-known ∗ ∗R s S( , , )n n policy. The results confirm that the RO
policy could outperform (R s S, , ) policy in terms of the average systemwide annual cost.

1. Introduction and brief literature review

A supply chain is a network in which procurement of raw material,
transformation of raw material to intermediate and finished products,
and distribution of finished products to customers are performed (Lee &
Billington, 1993). In different stages of such networks, inventory may
be kept in the form of raw material, work-in-process, and finished
product to confront the uncertainties. In many industries, inventory is
the second largest cost after production costs (Ertogral & Rahim, 2005).
Ganeshan (1999) states a fact that between 20% and 60% of the total
assets in a company is assigned to inventory. Therefore, one of the main
goals of industries might be to find the optimal policies to control in-
ventories such that the respective costs are minimized. In other words,
to stay competitive in today’s fast changing business environment,
companies should have an efficient control policy for managing their
inventories.

Inventory management has been studied for more than half a cen-
tury. After developing the well-known policy of Economic Order
Quantity (EOQ) proposed by Haris (1913) for managing inventory in a
single echelon inventory system, many researchers and practitioners
have investigated this issue using different operating policies under
various assumptions for single and multi-echelon inventory systems.
The study of multi-echelon inventory management dates back to the
1960s, when Clark and Scarf (1960) investigate a two-echelon serial
inventory system and presented the optimality conditions of −S S( 1, )
policy.

Moreover, the study of multi-echelon distribution systems dates
back to the 1960s, when Sherbrooke (1968) investigated the ( −S S1, )
policy, called METRIC, for a one warehouse multi-retailer (OWMR)
distribution system. As an extension to Sherbrook’s model, Graves
(1985) proposed an exact expression for the expected value and the
variance of unsatisfied orders at the retailers under −S S( 1, ) policy.
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Afterwards, researchers have studied the OWMR distribution system
under different settings. We summarize all the relevant work in the
literature of the OWMR distribution system in Table 1. Although the
literature on the OWMR distribution systems is rich, there are still some
restrictions to be relaxed.

As illustrated in Table 1, the majority of researchers have con-
sidered unsatisfied demand as backordered demand, while in reality
approximately 85% of unsatisfied demand is lost (Bijvank & Vis, 2011).
Modeling complexity of the lost demand situations is one of the reasons
that the majority of researchers have considered backordered demand
situations which are less realistic compared to similar situations with
lost demand. Moreover, in a real distribution system, retailers may have
different characteristics such as demand size, capacity limitation, or-
dering policy, etc. In this case, dealing with all the retailers in an
OWMR system identically is a simplifying assumption that makes the
problem less realistic. Table 1 shows that this simplification has been a
common assumption in the literature. Furthermore, considering capa-
city limitation for all the locations (i.e., warehouse and retailers) is not
a straightforward task.

In this study, we consider an OWMR distribution system consisting
of one-warehouse and N non-identical retailers as illustrated in Fig. 1.
In such a system, all locations, i.e., the warehouse and all the retailers,
monitor their inventory periodically. Customer demand happens just at

the lowest echelon where the retailers are located. We would like to
contribute to the literature of the OWMR distribution systems by pro-
viding a new mathematical model under the following assumptions:

(1) Lost sale situation at all the locations,
(2) Non-identical retailers,

Table 1
Literature review on the OWMR distribution system.

Authors Demand type Ordering policy Shortage Review Retailers

Sherbrooke (1968) Poisson −S S( 1, ) B C I
Graves (1985) C. Poisson −S S( 1, ) B C I
Schwarz, Deuermeyer, and Badinelli (1985) Poisson r Q( , ) B C I
Park and Kim (1989) Normal (R T, )/(r Q, ) B C/P I
Axsäter (1990) Poisson −S S( 1, ) B C I
Schneider and Rinks (1991) Stochastic s S( , ) B P I
Axsäter (1993) Poisson r Q( , ) B C I
McGavin, Schwarz, and Ward (1993) Poisson/Gamma Two-interval L P I
Schneider et al. (1995) Stochastic s S( , ) B P I
Graves (1996) Poisson −S S( 1, ) B C I
Axsäter (1998) Poisson r Q( , ) B C N
Ganeshan (1999) Poisson r Q( , ) B C I
Cachon and Fisher (2000) Stochastic r nQ( , ) B C I
Andersson and Melchiors (2001) Poisson −S S( 1, ) B/L C I
Cachon (2001a) Poisson r Q( , ) B C N
Cachon (2001b) Stochastic r nQ( , ) B C I
Axsäter (2003) C Poisson r Q( , ) B C I
Jokar and Seifbarghy (2006) Normal r Q( , ) B/L C I
Seifbarghy and Jokar (2006) Poisson r Q( , ) B/L C I
van Houtum (2006) Stochastic −S S( 1, ) B P I
Al-Rifai and Rossetti (2007) Poisson r Q( , ) B C I
Axsäter, Olsson, and Tydesjö (2007) C. Poisson r Q( , ) B C I
Gallego, Özer, and Zipkin (2007) Poisson/C. Poisson −S S( 1, ) B C I/N
Hill, Seifbarghy, and Smith (2007) Poisson −nr n Q( , ( 1) ) L C I/N
Monthatipkul and Yenradee (2008) Stochastic IDP L P I
Haji, Neghab, and Baboli (2009) Poisson −S S( 1, ) L C N
Chu and Shen (2010) Stochastic Power-of-two B P N
Geng, Qiu, and Zhao (2010) Stochastic Up-to-level L P I/N
Duc, Luong, and Kim (2010) Stochastic Up-to-level B P I
Lee and Jeong (2010) Deterministic Power-of-two None P I
Atan and Snyder (2012) Deterministic −S S( 1, ) B P I/N
Yang, Chan, and Kumar (2012) Deterministic Batch size B P I
Basten and van Houtum (2013) Poisson −S S( 1, ) B C I
Wang (2013) Poisson Up-to-level B P I
Berling and Marklund (2014) Normal/C. Poisson r nQ( , ) B C I
Howard, Marklund, Tan, and Reijnen (2015) Poisson −S S( 1, ) B/L C I/N
Mateen, Chatterjee, and Mitra (2015) Normal Up-to-level B P I
Gayon, Massonnet, Rapine, and Stauffer (2016) Deterministic JRP B/L P I
Stenius, Karaarslan, Marklund, and De Kok (2016) C. Poisson r nQ( , ) B C I
Feng, Fung, and Wu (2017) Stochastic Up-to-level L P I
Turan, Minner, and Hartl (2017) Stochastic Batch size L – I
Verma and Chatterjee (2017) Deterministic Batch size None P N

C. Poisson: compound Poisson; L: lost sale; B: backorder; C: continuous; P: periodic; I: identical; N: non-identical.

Fig. 1. An OWMR distribution system.
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