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A B S T R A C T

Two-stage assembly flow shops are integral part of several manufacturing systems such as computer and engine
manufacturing lines. This paper explores three objectives of makespan, total tardiness, and total completion
times for two-stage assembly flow shop with release time. To the best of our knowledge, these performance
measures have not been addressed simultaneously in assembly flow shops. We derive polynomial optimal so-
lutions for special cases of this problem with a single objective and then develop heuristics with promising
starting solutions for the multi-objective case. Due to NP-hardness of the problem, we apply a customized re-
ference-based Non-dominated Sorting Genetic Algorithm (NSGA-III) and Multi-Objective Particle Swarm
Optimization (MOPSO) as solution procedures. Finally, we present extensive computational analysis to compare
the performance of employed heuristic and metaheuristics on randomly generated instances. Results show that
both NSGA-III and MOPSO generate competitive solutions for the presented problem. However, NSGA-III gen-
erates significantly better results than MOPSO based on one of the three performance metrics.

1. Introduction

Two-stage assembly flow shop, AF2, is a classical model where
components are processed on parallel machines in the first stage and
then these components are assembled on one assembly machine in the
second stage. AF2 has diverse applications in manufacturing and ser-
vice industry. Among several applications of AF2, we can refer to en-
gine assembly plant by Lee, Cheng, and Lin (1993), computer manu-
facturing by Potts, Sevast’janov, Strusevich, Van Wassenhove, and
Zwaneveld (1995), queries scheduling on distributed data by Allahverdi
and Al-Anzi (2006), food and fertilizer production by Hwang and Lin
(2012), and paint manufacturing by Chen, Huang, Luo, and Wang
(2015).

Except one publication by the author of this article, Komaki and
Kayvanfar (2015), all publications in the literature assume that com-
ponents are available for production at the beginning of the process.
Obviously, this assumption may not hold in practice all the time and it
would be more realistic to assume non-negative release times for
components. Considering components’ release times in AF2 model is
not only important but necessary in many practical cases. We also
consider three simultaneous objectives of total completion time, ma-
kespan, and total tardiness. The goal is to find the sequence of jobs that
minimizes these objectives. To the best of our knowledge, all these

specifications have not been considered altogether in previous re-
searches. According to the triple notation adopted by Graham, Lawler,
Lenstra, and Rinnooy Kan (1977), our proposed problem is identified as
AF(m,1)|rj|(Cmax, TT, TC).

Assembly flow shop with single objective of makespan or comple-
tion time or tardiness is known to be NP-hard in strong sense
(Koulamas, 1994; Lee et al., 1993; Tozkapan, Kirca, & Chung, 2003).
Therefore, multi-objective optimization of this problem is also NP-hard
in strong sense. Prior to the rise of metaheuristic methods, a handful of
branch and bound algorithms was offered for AF2 problems, see Lee
et al. (1993) and Hariri and Potts (1997). Due to NP-hardness of this
problem and computational burden of branch and bound algorithm,
special efforts have been taken to find efficient solutions using meta-
heuristic methods. Algorithms such as Particle Swarm Optimization and
Tabu Search by Allahverdi and Al-Anzi (2006) and Allahverdi and
Aydilek (2015), Grey Wolf by Komaki and Kayvanfar (2015), and Ar-
tificial Immune System by Komaki, Teymourian, and Kayvanfar (2016)
are among those.

This paper is organized as follows. A brief review of multi-objective
AF models and their proposed solutions are presented in Section 2.
Problem definition, assumptions, and special cases are explained in
Section 3. Section 4 discusses the proposed lower bounds, heuristic, and
metaheuristics. Section 5 contains the experimental results for proposed
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heuristic and metaheuristic algorithms where we evaluate the perfor-
mance of NSGA-III, MOPSO and other benchmarks using randomly
generated instances and Section 6 concludes this research.

2. Literature review

Multi-objective assembly flow shop problem has been addressed by
several researchers in recent years. However, majority of these re-
searches consider two objectives of makespan and total completion
time as the most frequently used performance measures. For instance,
Allahverdi and Al-Anzi (2008) applied simulated annealing (SA), Ant
colony optimization, and self-adaptive differential evolution to solve AF
(m,1)||(Cmax, TC) with SA outperforming other algorithms. Later,
variable neighborhood search by Javadian et al. (2009), cloud theory
based simulated annealing by Torabzadeh and Zandieh (2010), and
imperialist competitive algorithm (ICA) by Shokrollahpour, Zandieh,
and Dorri (2011) generated superior results than SA. Al-Anzi and
Allahverdi (2009) presented tabu search (TS), particle swarm optimi-
zation (PSO), and self-adaptive differential evolution for AF(m,
1)||(Cmax, Lmax) where PSO outperformed the others. Azadeh,
Jeihoonian, Shoja, and Seyedmahmoudi (2012) proposed a simulation
approach coupled with multi-layer neural network to solve AF2 model
with set-up time, machine breakdown, and stochastic activity times.
Later, Seidgar, Zandieh, and Mahdavi (2016), Seidgar, Zandieh,
Fazlollahtabar, and Mahdavi (2016) and Tian, Liu, Yuan, and Wang
(2013) proposed NSGA and discrete particle swarm optimization for the
same problem. Seyedi and Maleki-Daronkolaei (2013) investigated AF
(m,1)||(TE, TT) and developed variable neighborhood search (VNS),
SA, and GA algorithms with VNS outperforming the others. Mozdgir,
Fatemi Ghomi, Jolai, and Navaei (2013) developed hybrid variable
neighborhood search for AF(m, n)||(Cmax, TC) problem with setup costs.
Komaki and Kayvanfar (2015) offered grey wolf optimizer algorithm for
AF(m, 1)| rj |(Cmax, TC).

Majazi Dalfard, Ardakani, and Nazalsadat Banihashemi (2011)
proposed a hybrid genetic algorithm for AF model with sequence de-
pendent set-up and transportation times and objectives of total
weighted squared tardiness, earliness, makespan, and number of tardy
jobs. Navaei, Fatemi Ghomi, Jolai, and Mozdgir (2014) proposed SA
and ICA for AF(m1, m2) considering set-up times and non-identical
machines in assembly stage. Authors used holding and delay costs as
the performance measures. Yan, Wan, and Xiong (2014) proposed hy-
brid electromagnetism-like algorithm and VNS for AF||(Cmax, Emax,
Lmax). Chen et al. (2015) proposed a bi-objective nonlinear program for
AF problem with the objectives of minimizing maximum waiting time
and average earliness and tardiness and performance measures of
production simultaneity and shipment punctuality. Authors utilized
linear weighted sum method to balance the two criteria and proposed
modified genetic algorithm as the solution procedure. Wang, Ma, Luo,
and Qin (2016) developed a coordinated scheduling system for pro-
duction and transportation in a two-stage AF with batching as their last
stage. Their objective was to decrease the total delivery cost while re-
ducing the average arrival times. Kazemi, Mazdeh, and Rostami (2017)
implemented ICA and a hybrid ICA to solve AF problem with mini-
mizing batch delivery and total tardiness times. A nomenclature of
abbreviations used in triple notations and a list of multi-objective as-
sembly flow shop papers with their main specifications and solution
methods are summarized in Tables 1 and 2, respectively.

Multi-Objective Evolutionary Algorithms (MOEAs) are categorized
into methods with no tool for preservation of good solutions (elitism),
such as Non-dominated Sorting Genetic Algorithm (NSGA), and
methods with the elitism mechanism, such as NSGA-II by Deb, Agrawal,
Pratap, and Meyarivan (2000 & 2002). NSGA is a popular evolutionary
algorithm with a non-dominated sorting procedure that applies a
ranking method with emphasis on superior solutions, see Coello (1999).

This algorithm maintains the diversity in the population by utilizing a
sharing method and exploring different regions in Pareto front.
Nevertheless, NSGA’s drawbacks such as lack of elitism has limited its
usage in recent years. NSGA-II is a modified version of NSGA that uti-
lizes a fast non-dominated sorting genetic algorithm with more com-
putational efficiency and less dependency on sharing parameter for
diversity preservation, see Deb et al. (2000) and Deb, Pratap, Agarwal,
and Meyarivan (2002). Recently, a reference-point based multi-objec-
tive NSGA-II algorithm (called NSGA-III) is proposed by Deb and Jain
(2014) with superior performance for problems with more than two
objectives. The novelty of NSGA-III is in using the reference points to
preserve the diversity of the population. Reference points are either
provided by experts or generated by a systematic method such as the
one developed by Das and Dennis (1998). Also, NSGA-III has been re-
cently used by some researchers in different areas such as Kayvanfar,
Husseini, Karimi, and Sajadieh (2017).

In addition to the evolutionary algorithms, some multi-objective
metaheuristic approaches, such as Multi-Objective Particle Swarm
Optimization (MOPSO), have also been used to solve the multi-objec-
tive optimization problems, see Moore and Chapman (1999). This
metaheuristic is inspired from the social behavior of birds within a flock
where particle represents each potential solution of the problem and
swarm represents the population of solutions. In Particle Swarm Opti-
mization (PSO), each particle searches the solution space based on its
current position and velocity direction. Due to efficiency and fast
convergence of the PSO in solving single objective problems, it has been
extended to solve multi-objective problems. Since the inception of
MOPSO by Moore and Chapman in 1999, several versions of MOPSO
have been proposed in the literature. MOPSO has been shown to out-
perform NSGA-II in solving various benchmark problems (Kennedy,
Kennedy, Eberhart, & Shi, 2001).

In this study, two metaheuristic algorithms, NSGA-III (Deb and Jain,
2014) and MOPSO (Coello, Pulido, & Lechuga, 2004) to solve the ad-
dressed problem in affordable computational time are developed. These
algorithms are customized to handle the constraints of the problem.
After obtaining the optimal solutions in Pareto frontier utilizing NSGA-
III and MOPSO, several metrics are calculated to compare the solutions.

3. Problem definition and special cases

The first stage in AF2 consists of m non-identical parallel machines
and the second stage has only one assembly machine. There exist n jobs,
each is made of m components and m+1 operations where the first m
operations are processed in the first stage and the assembly operation in
the second stage. We assume that preemption is not allowed on any

Table 1
Nomenclature of abbreviations used in triple notations α|β|γ.

β γ
Notation Explanation Notation Explanation
SD
SI
r
NW
B
PM
ML
LI

Sequence-dependent set-up
time
Sequence Independent set-
up time
Non-zero release time
No wait between
subsequent processes
Non-zero buffer between
machines
Preventive Maintenance
Multiple Lot
Limited Inventory Size

Cmax

TE
FDC
Lmax

SC
TT
TU
UAS
VDC
VHC
W
TC
LT
FC

Makespan
Total (weighted) Earliness
Fixed Delay Costs
Maximum lateness where
Lj= Cj − dj
Shipping (delivery) costs
Total (weighted) tardiness
Total number of tardy jobs
Unavailability of System
Variable Delay Costs
Variable Holding Costs
Waiting time
Total (weighted) completion
times
Order Lead Time
Shop Floor Costs
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