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A B S T R A C T

The problem studied in this paper is the open vehicle routing problem with time windows. This problem is
different from the better known vehicle routing problem with time windows because in the former the vehicles
do not return to the distribution depot after delivering the goods to the customers. For solving this problem an
iterated local search algorithm was used, whose good results are mainly due to the kind of perturbations applied,
in particular, ejection chains, and also to the use of elite solutions. The performance of this algorithm is tested
using a large set of benchmark problems, containing 418 instances in total. The solutions obtained show that it is
competitive with the best algorithms existing in the literature.

1. Introduction

The open vehicle routing problem with time windows (OVRPTW) con-
sists in finding a set of minimum cost open routes, in order to serve a
given number of dispersed customers, whose geographical location,
demand, and time window for the delivery are known. Each route is
travelled by one vehicle assigned to it, which starts the trip at the depot
and visits each customer of the route according to a given schedule.
After visiting the last customer of the route, the vehicle does not return
to the depot, which is why the route is called ‘open’.

In practice, we have an OVRPTW when a company uses hired ve-
hicles for the distribution of its goods because, after visiting the last
customer of the route, the hired vehicles end the trip and is no longer
paid for by the company that hired them. On the other hand, when the
vehicles are owned by the company, each vehicle ends the journey at
the depot. The latter case is an example of the well-known VRPTW,
which has been studied by many researchers and, consequently, dozens
of papers have been published describing exact and approximation al-
gorithms. As the discussion of the algorithms for the VRPTW is not part
of the scope of this paper, we advise interested readers to consult the
research of Bräysy and Gendreau (2005a, 2005b) and Baldacci,
Mingozzi, and Roberti (2012). In addition, a recent survey of algorithms
for different types of vehicle routing problems can be found in Braekers,
Ramaekers, and Nieuwenhuyse (2016).

So far as we know, Schrage (1981) has been the first author to bring
to attention the practical applications of the VRP with open routes.
Later, Bodin, Golden, Assad, and Ball (1983) described a real problem
of express airmail distribution in the USA, containing many practical

features, such as delivery or pickup time windows, total route length,
and capacity of the airplane. They have solved two routing problems
separately, one for deliveries, and the other for the pickups, using the
Clarke and Wright savings algorithm, which has been modified to take
into account the open routes.

In the literature there are many other practical problems that can be
formulated as OVRPTW, although, as expected, most of them contain
other features which show the richness and the complexity of the real
problems. As examples, we cite the paper of Russell, Chiang, and
Zepeda (2008), which solves a problem of newspaper distribution, and
the paper of Repoussis, Paraskevopoulos, Zobolas, Tarantilis, and
Ioannou (2009a), which describes the solution of a lubricant distribu-
tion problem. Some other examples have been described in Fu, Eglese,
and Li (2005) and Li, Golden, and Wasil (2007).

In spite of the many applications mentioned above and their eco-
nomic importance, the research regarding specific algorithms for the
OVRP, i.e., the OVRPTW without time windows constraints, only
started about two decades ago. Since then, many papers have been
published. Examples include: Sariklis and Powell (2000), Brandão
(2004), Fu et al. (2005), Tarantilis, Kiranoudis, Ioannou, and Prastacos
(2005), Letchford, Lysgaard, and Eglese (2007), Li et al. (2007), and
Fleszar, Osman, and Hindi (2009), amongst others. Several other var-
iants of the OVRP have been addressed by published papers as, for
example, Yu, Jewpanya, and Redi (2016), who studied the OVRP with
cross-docking and Soto, Sevaux, Rossi, and Reinholz (2017), who stu-
died the multi-depot OVRP. The same concept has also been applied to
the arc routing problem, such as, for example, the study of Fung, Liu,
and Jiang (2013). On the other hand, the only published papers about
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the OVRPTW, without other side constraints, are those of Repoussis,
Tarantilis, and Ioannou (2007) and Repoussis, Tarantilis, and Ioannou
(2009b). Besides these two papers, that of Vidal, Crainic, Gendreau, and
Prins (2014) studies several variants of the VRP, including the
OVPRTW, as does the working paper of Kritzinger, Tricoire, Doerner,
Hartl, and Stützle (2012).

The constraints taken into account in the OVRPTW are the fol-
lowing: (i) all the vehicles have the same capacity, which must not be
exceeded, and each one is assigned to one route; (ii) a vehicle route
starts at the depot and finishes at a customer; (iii) customers’ demand
must be satisfied; (iv) each customer must be visited only once; (v) the
delivery starts within the time window, i.e., a time interval, imposed by
the customer, and therefore the vehicle has to wait on arriving before
the beginning of that interval; (vi) the total travelling time of each
route, including waiting and unloading time, cannot exceed a driver’s
working day.

The objective is to minimise the number of vehicles, subject to the
constraints just mentioned and, for a given number of vehicles, to
minimise the total distance travelled by the vehicles. In practice, the
travelling time is, in general, more expensive than the travelling dis-
tance on account of the driver’s wage. In spite of this, we decided to use
distance as the second objective. The reason for this is that other au-
thors do so, and we wish to compare our results with theirs.
Independently of using as second objective the distance or the time,
most researchers agree that the first objective is far more important
than the second one. This means that, in general, the fixed cost of one
more vehicle and the wage of the corresponding driver exceed any
possible savings in the distance travelled.

Another interesting line of research could be the use of multiple
objective combinatorial optimization (MOCO) for solving the OVRPTW,
considering a set of different objectives, without any relation of pre-
ference between them. In general, no single point exists that minimises
all the objectives because they are conflicting. Therefore, a MOCO
method has to generate the set of all non-dominated solutions, which
are also called Pareto optimal, or, at least, a representative subset of
them. A non-dominated solution is defined as a solution that is better
than any other in relation to at least one objective, without being worse
in relation to all the remaining ones. The purpose of the algorithm
presented in this paper is not to find the set of Pareto optimal solutions
for the OVRPTW with the two objectives defined above. Nevertheless, it
can yield two non-dominated solutions (in fact, they are approximate,
as the algorithm is not exact) by reversing the priorities of the two
objectives defined above. This will be done for one set of test problems,
in order to just show the influence on the solutions of this hierarchy of
objectives.

The OVRPTW is a NP-hard combinatorial problem, as each route is a
Hamiltonian path with time windows (HPTW), as has been proven, for
example, by the research of Syslo, Deo, and Kowaklik (1983), where the
HPTW is converted into a travelling salesman problem with time win-
dows (TSPTW), which is a well-known NP-hard problem.

The OVRPTW is very difficult to solve, mainly due to the presence of
time windows constraints. Savelsbergh (1988) proved that even the
problem of determining whether there is a feasible tour for the TSPTW
is NP-hard. This difficulty is observed when devising heuristics, as some
concepts, such as closeness between customers, lose most of their
meaning, especially if the time windows are tight.

The algorithm created by Repoussis, Tarantilis, and Ioannou (2007)
is a sequential insertion heuristic. According to the authors, the per-
formance of this heuristic is due to the time window based criteria that
incorporates a look-ahead feature. These criteria are used for the se-
lection of the next customer to enter the route under construction, and
for choosing where it will be inserted in the route.

Repoussis, Tarantilis, and Ioannou (2009b) use an evolutionary al-
gorithm where, at each generation, the population of offspring is pro-
duced exclusively through mutation. Next, each offspring is improved
by a tabu search algorithm.

Vidal et al. (2014) use an algorithm called unified hybrid genetic
search, which contains a set of problem-independent procedures, which
is embedded in a solution framework that links the algorithm with the
specific attributes of each variant of a vehicle routing problem.
Therefore, this framework allows the solution of a large number of
different types of vehicle routing problems, including the OVRPTW.

Kritzinger et al. (2012) also developed what they call a unified
variable neighbourhood search, which is capable of solving several
kinds of vehicle routing problems with a fixed fleet size.

In this paper, we introduce an iterated local search algorithm (ILSA)
for solving the OVRPTW. As with any other metaheuristic, in order to
find high quality solutions, the iterated local search requires a good
compromise between the diversification and intensification of the
search. The diversification is obtained by exploring regions of the so-
lution space that are far apart. This is the case, for example, if two
OVRPTW solutions, s1 and s2, have no arcs in common. The in-
tensification results from exploring thoroughly the vicinity of a given
solution. This happens, for example, if s2 is obtained from s1 by deleting
one arc and adding a new one, i.e., by only changing a few arcs of s1 at a
time, better solutions than s1 may be found in its close neighbourhood.

The main contribution of this paper is the proposal of a set of pro-
cedures that act together originating an effective balance between di-
versification and intensification, allowing to find high quality solutions
in a short computing time. These main features and procedures are the
following: ejection chain moves, elite solutions, a proximity concept
that takes into account time and space, a neighbourhood move re-
striction that takes into account this proximity, and also three solution
phases, each with a different objective function. On the programming
side, the characteristics of the problem are taken into account in such a
way that the computational execution of the algorithm is considerably
efficient.

The remainder of this paper is organised as follows. Section 2 pre-
sents the mathematical model, and Section 3 describes the ILSA,
starting with a short presentation of the methodology on which it is
based. Next we describe the specific main features of the algorithm and
in the end we provide the outline of the algorithm, in order to show
how the different components work together. The computational ex-
periments are described in Section 4, and the final conclusions are
presented in Section 5.

2. Notation and mathematical formulation

The customers and the depot are represented by a set of vertices, V
= {0, 1, …, N}, where 0 is the depot, and N is the total number of
customers. The set of arcs that connect the V vertices is called A.

dij: travel distance between i and j, (i, j) A. We assume that the
matrix (dij) is symmetric and satisfies the triangle inequality, i.e., dij
= dji, and dij ≤ dik + djk, for all i, j, k V. However, as the vehicles are
not allowed to return to the depot, we set di0 = , i∈ V ∖{0}.
ui: time of unloading at vertex i, i V, u0 = 0.
tij: travel time between i and j, plus ui, (i, j) A. We assume that dij =
tij – ui, (i, j) A.
ei: earliest starting time of the delivery at vertex i, i V.
li: latest starting time of the delivery at vertex i, i V.
qi: demand of vertex i, i V, q0 = 0.
m: number of available vehicles. The vehicles are identical, and the
number of vehicles available is unlimited. The minimum number
required is given by (2) and the maximum is N.
F: fixed cost of each vehicle. Since the first objective is to minimise
the number of vehicles used, the value of F in (3) should be a large
constant (for example, greater than the sum of the distances be-
tween all the vertices).
Q: capacity of each vehicle.
τ: maximum daily driving time of a driver. Since our test problems
are taken from the VRPTW, we assume that τ = l0 – e0.
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