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A B S T R A C T

The most productive scale size (MPSS) of decision systems has been measured for the whole system by using
conventional data envelopment analysis (DEA) methodology. This paper investigates the MPSS measurements
for systems consisting of multiple stages connected in series by taking into account the interrelationship of the
stages within the system. New models are proposed for determining the MPSS of the system and of the individual
stages. Mathematical analysis proves that the MPSS of the system can be decomposed as the sum of the MPSS
values of the individual stages. As a result, the system is overall MPSS if and only if it is MPSS in each stage. With
MPSS decomposition, the decision maker can identify the non-MPSS stages and make subsequent improvements.
For these improvements, an approach to project the non-MPSS system onto the MPSS region is proposed.
Numerical examples are provided to show the applicability of the proposed methods in both estimating MPSS
and deriving MPSS projections.

1. Introduction

Data envelopment analysis is an approach based on linear pro-
gramming (LP) and is used to assess the relative efficiency of peer de-
cision making units (DMUs) which have multiple inputs and outputs
(Charnes, Cooper, & Rhodes, 1978). Previous works have shown that
DEA can be applied in numerous environments and applications, such
as supply chain (Yang, Wu, Liang, Bi, & Wu, 2011), transportation (Bi,
Wang, Yang, & Liang, 2014), electricity power production (Khalili-
Damghani & Shahmir, 2015), bank performance (Kao & Liu, 2014),
environment (Zhou, Ang, & Poh, 2008), public health (Ozcan &
Khushalani, 2017), Olympic games (Li, Lei, Dai, & Liang, 2015), port
performance (Jiang, Chew, Lee, & Sun, 2012), resource allocation (Wu,
Zhu, An, Chu, & Ji, 2016), etc.

Conventional DEA treats the system as a whole unit, black box, in
evaluating the efficiency. It makes no assumption about the procedures
taking place inside the evaluated DMU. However, in some real-life
applications such as supply chain, the systems consist of two or more
stages, and there are intermediate measures which are considered as
outputs in one stage and inputs in another stage. Several models and
approaches have been proposed to treat this case (see, e.g., Zhang &
Yang, 2015; Boloori, 2016; Lewis, Mallikarjun, & Sexton, 2013; Li,
Chen, Liang, & Xie, 2014; Yang, Du, Liang, & Yang, 2014). In the last

few years, many studies on multi-stage DEA have focused on decom-
position of the system efficiency into the sub-system efficiencies (see,
e.g., Chen, Liang, & Zhu, 2009; Cook, Zhu, Bi, & Yang, 2010; Du, Zhu,
Foisie, & Huo, 2014; Kao, 2016; Kao & Hwang, 2008; Kao & Hwang,
2011; Liang, Cook, & Zhu, 2008). The decomposition of system effi-
ciency is mostly done under the assumption of constant returns to scale
(CRS). Recently, Sahoo, Zhu, Tone, & Klemen (2014) have studied this
decomposition under the assumption of variable returns to scale (VRS).
In addition, they discussed the decomposition of scale elasticity (SE) in
two-stage network DEA. Furthermore, some studies proposed new
models involving network structure within the framework of a slacks-
based measure approach. Avkiran & McCrystal (2012) compared net-
work slacks-based measure (NSBM) with network range-adjusted
measure (NRAM). Tone & Tsutsui (2014) developed network SBM and
dynamic models and then they combined them in one model.

MPSS, an essential topic in DEA, can improve the production pro-
cess by maximizing the average productivity of a DMU to reach its
optimal scale. Managers and decision makers seek to achieve that op-
timal scale, MPSS, for their DMUs. It is well known that the concepts of
efficiency and MPSS of a DMU are close; however, they are not identical
in the sense that not every efficient DMU is MPSS because this DMU
may be located on the increasing or decreasing part of the efficient
frontier. Therefore, there is an urgent need to find distinct models to

https://doi.org/10.1016/j.cie.2018.04.043
Received 19 April 2017; Received in revised form 23 October 2017; Accepted 22 April 2018

⁎ Corresponding author at: Department of Mathematics, College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
E-mail addresses: saeedassani@mail.ustc.edu.cn (S. Assani), jiangjianlin@nuaa.edu.cn (J. Jiang), caorongmei@nuaa.edu.cn (R. Cao), fengyang@ustc.edu.cn (F. Yang).

Computers & Industrial Engineering 120 (2018) 279–287

Available online 25 April 2018
0360-8352/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03608352
https://www.elsevier.com/locate/caie
https://doi.org/10.1016/j.cie.2018.04.043
https://doi.org/10.1016/j.cie.2018.04.043
mailto:saeedassani@mail.ustc.edu.cn
mailto:jiangjianlin@nuaa.edu.cn
mailto:caorongmei@nuaa.edu.cn
mailto:fengyang@ustc.edu.cn
https://doi.org/10.1016/j.cie.2018.04.043
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2018.04.043&domain=pdf


identify the MPSS state for each DMU. The MPSS concept was first in-
troduced into DEA by Banker (1984) who developed the relationship
between MPSS and returns to scale (RTS). Then he used this relation to
extend the applications of DEA, introduced by Charnes et al. (1978), to
the estimation of MPSS for convex production possibility sets. Later,
Cooper, Thompson, & Thrall (1996) provided a fractional objective
function for determining the MPSS; their definition of MPSS considers
the potential DEA slacks and thereby it is stronger than that of Banker
(1984). As an alternative, Jahanshahloo & Khodabakhshi (2003) in-
troduced a linear input–output orientation model for estimating the
MPSS, which is proved to be equivalent to that in Cooper et al. (1996).
In recent studies, MPSS has been estimated with stochastic data
(Khodabakhshi, 2009), with an imprecise-chance constrained in-
put–output orientation model (Eslami, Khodabakhshi, Jahanshahloo,
Hosseinzadeh Lotfi, & Khoveyni, 2012), and with the double frontiers
approach (Wang & Lan, 2013). Davoodi, Zarepisheh, & Rezai (2014)
introduced a notion of the nearest MPSS pattern, which yields the
closest MPSS pattern compared to all others. Lee (2016) proposed a
multi-objective mathematical program with DEA constraints to set an
efficient target that shows a trade-off between the MPSS benchmark
and a potential demand fulfillment benchmark.

Despite the importance of MPSS and abundance of publications on
the efficiency of multi-stage network DEA, to the best of our knowledge,
MPSS has not been addressed in the multi-stage DEA literature. In this
study, the MPSS for multi-stage network DEA is investigated. For multi-
stage network DEA, decomposing the system MPSS is considered re-
levant to decision makers because it locates the source of scale econo-
mies. With the MPSS decomposition, decision makers can identify the
unsatisfactory internal stages which degrade the performance of the
whole system and thereby appropriate amendments can be made to
achieve the most productive scale size. Thus, the first contribution of
this study is the decomposition of system MPSS into the sub-system
specific MPSS. For decomposing MPSS, we introduce two models to
estimate the system and sub-system MPSSs. Then we prove analytically
that the MPSS of the system is the sum of the sub-system MPSSs. As a
result, the decision making unit is overall MPSS if and only if it is MPSS
in each stage.

The question that arises here is how appropriate amendments can be
made to the non-MPSS systems to achieve their optimal scales. The
answer to this question leads to a discussion of another critical issue,
MPSS projection, i.e., the decision making unit that does not achieve its
MPSS is improved by projecting it onto the MPSS region. MPSS pro-
jection has been studied in the conventional DEA, black-box DEA, by
Banker & Morey (1986). For multi-stage network DEA, we introduce an
approach consisting of two steps for determining the MPSS projections
in the multi-stage network DEA. In the first step, a procedure is pro-
posed to find the BCC-efficient projections for non-MPSS DMUs. In the
second step, the BCC-efficient projections are further projected onto the
CCR frontier using the procedure of Chen, Cook, & Zhu (2010). The
resulting points are shown to be MPSS under our proposed approach.
The second contribution of this study is to address this issue of MPSS
projections in the multi-stage network DEA.

The rest of the paper is organized as follows. Section 2 briefly in-
troduces the most productive scale size in the conventional DEA. Sec-
tion 3 presents the general two-stage process. Section 4 then shows the
development of our models for determining MPSS for the system and
the individual stages and proves the relationship between them. The
projections of non-MPSS DMUs onto the MPSS region are discussed in
Section 5. In Section 6 we apply our approach to the application of Kao
& Hwang (2008) involving Taiwanese non-life insurance companies.
Some conclusions are given in Section 7.

2. Estimating MPSS in conventional DEA

We define the set of production possibility as
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The model introduced by Cooper et al. (1996) for determining the
MPSS in the black-box DEA is as follows.

β αMax / (1)

∑

∑

∑

⩽

⩾

=

⩾
⩾ = …

=

=

=

s t λ X αX

λ Y βY

λ

α β
λ j n

. . ,

,

1,

, 0,
0, 1,2, , .

j

n

j j o

j

n

j j o

j

n

j

j

1

1

1

Using the above model, Cooper et al. (1996) defined the MPSS as
follows.

Definition 1. DMUo is said to be MPSS if the following conditions are
satisfied:

i. The optimal objective function value of Model (1) is equal to unity,
i.e. =∗ ∗β α/ 1o o .

ii. All the slacks are zero in any optimal solution.

Another definition for MPSS is given by Banker (1984).

Definition 2. ∈X Y T( , )o o is MPSS if and only if for every ∈αX βY T( , )o 0
we have ⩾α β.

The condition of Definition 2 is the same as (i) in Definition 1. It
follows that Definition 1 is stronger than Definition 2 because the
former considers the slacks. In other words, Cooper et al. (1996) define
strong or Pareto-efficient MPSS.

Instead of using the fractional objective function of Model (1),
Jahanshahloo & Khodabakhshi (2003) proposed an input–output or-
iented model for determining the MPSS with a linear objective function
as follows.
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Since = = = = ≠β α λ and λ j o1, 1, 1, 0( )o j is a feasible solution
for which the objective function value of Model (2) is zero, the optimal
objective function value of Model (2) is non-negative. It follows that

⩾∗ ∗β α .
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