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A B S T R A C T

Monitoring the Equipment Health Indicator (EHI) of critical machines helps effectively to maintain process
quality and reduce wafer scrap, rework, and machine breakdowns. To model and illustrate the integration of EHI
in scheduling decisions to balance between productivity and quality risk, this paper presents two mixed integer
linear programs to schedule jobs on heterogeneous parallel batching machines. The capability of a machine to
process a job is categorized as preferred, acceptable, and unfavorable based on the job requirements. The quality
risk of processing a job by a machine is a function of its EHI and the capability level of the machine for the job,
which is modeled as a penalty in the objective function of trading-off between productivity and quality risk. The
first model is static and assumes constant EHI of machines on the scheduling horizon, whereas the second model
considers the EHI dynamics, i.e., the machine condition deteriorates over time based on the scheduled jobs.
Numerical experiments indicate the potential applications of using EHI-integrated scheduling approaches to
analyze and optimize the trade-off between productivity and quality risk.

1. Introduction

Semiconductor wafer fabrication has experienced fast advancement
in process technologies and a stringent market environment in the past
few decades. Though the worldwide demand is growing, the capital
expenditure grows even faster. The cost of a single machine may exceed
US$20 million, higher than most other industries (Johnzén, Dauzère-
Pérès, & Vialletelle, 2006). Raising manufacturing efficiency via sche-
duling is therefore a critical and demanding task to maximize the return
on investment (Mönch, Fowler, Dauzère-Pérès, Mason, & Rose, 2011).

Scheduling is a function determining when and which wafers are
processed by which machine or machine group. Given the delivery
requirements from customers, wafers are released in the production line
and then processed in a serial flow by different machines. Known as one
of the most complex manufacturing processes, each wafer requires
hundreds of manufacturing operations in reentrant routes. One wafer
visits the same machine groups multiple times in order to form the
desired circuitry pattern layer by layer on the wafer surface. This re-
entrant feature leads to a unique challenge for scheduling because the
wafers of either the same or different product types at different layers of
fabrication compete for the finite capacity of a machine group.

In the literature, though there are substantial studies on production
scheduling (Bitar, Dauzère-Pérès, Yugma, & Roussel, 2016; Bixby,
Burda, & Miller, 2006; Chen, 2010; Guo, Jiang, Zhang, & Li, 2012; Kao
et al., 2011; Kim & Lee, 2016; Knopp, Dauzère-Pérès, & Yugma, 2017;
Koh, Koo, Ha, & Lee, 2004), the status of individual machine is simply
set as either up or down, i.e., a binary value, 1 for up and 0 for down, in
the Manufacturing Execution System (MES) (Yugma, Blue, Dauzère-
Pérès, & Obeid, 2015). State 1 indicates that the machine is available to
process the operation and state 0 specifies that the machine is un-
available because of scheduled a Preventive Maintenance (PM) or an
unscheduled breakdown. Status of machines is assumed independent of
the production schedule. However, advanced process technologies re-
quire high conformance to process specifications. Even though the
machine is shown as available in the MES, the process quality may not
be guaranteed due to the machine deterioration (Chen & Wu, 2007;
Sloan & Shanthikumar, 2002).

From a long-term viewpoint, the probability of machine failure
naturally increases with the age of the machine (Kamien & Schwartz,
1971). Advanced technologies in semiconductor manufacturing require
smaller process tolerances. The dynamic environment, particularly with
high product mix and low volumes, increases the difficulty of
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maintaining the stability of processes. As depicted in Fig. 1(a), older
machines have higher failure probabilities than newer ones. In addi-
tion, wafer scrap, rework, or unexpected machine breakdown resulting
from worn parts will increase production cycle times and decrease
productivity. The products which are critical or require a high degree of
precision should not be assigned to machines with high failure prob-
abilities, as the product has a high chance to obtain less desired quality
after processing. This idea motivates the need to include the level of
machine degradation into scheduling decisions.

Apart from long-term degradation, machines also deteriorate on the
short term, creating the need for prognosis and health management. For
example, particle contamination in a machine may occur after proces-
sing some contaminated wafers, which leads to a less-desired machine
condition for the following process runs. Monitoring particles in a
machine and executing the proper maintenance, i.e., a condition-based
(or predictive) maintenance policy, help achieving high system per-
formance with minimum cost instead of a fixed time or count interval to
perform Preventive Maintenance, as shown in the enlargement of a
dotted square in Fig. 1(a) and 1(b). Many valuable studies have pro-
posed and discussed condition-based maintenance models in the lit-
erature (Cheng, Zhou, & Li, 2017; Cui, Lu, Li, & Han, 2018; Grall,
Bérenguer, & Dieulle, 2002; Luo, Yan, Hu, Zhou, & Pang, 2015; Yoo &
Lee, 2016). A two-level maintenance methodology is proposed in (Xia,
Tao, & Xi, 2017) for manufacturing systems, in which machine-level
predictive maintenance schedules are first considered and then a vari-
able maintenance time window is used to optimize system-level main-
tenance. Such condition-based maintenance and health management
can further be considered in batching production with variable lot size
(Xia, Jin, Xi, & Ni, 2015). Both long and short-term machine dete-
rioration and condition-based maintenance motivate the integration of
machine conditions in scheduling decisions.

Considering machine conditions in production has demonstrated
significant improvements for a number of operational metrics in
semiconductor manufacturing. First, a good maintenance policy helps
to reduce the production loss of machines as the unexpected machine
failures can be reduced (Jin & Mechehoul, 2010; Luo et al., 2015; Tag &
Zhang, 2006; Yu, Lin, & Chien, 2014; Zheng, Zhou, Zheng, & Wu,
2016). For example, machine degradation is modeled as a non-sta-
tionary Gaussian process with time-varying mean and variance. The

model is then adopted to determine the maintenance schedule for
minimizing production cost. Second, the variations between different
lots and different chambers can be compensated through proper ma-
chine assignment and dispatching (Sloan & Shanthikumar, 2002). A
new dispatching criterion is designed to improve the process control of
etch depth, which exploits machine variations in the same group ob-
tained from equipment data (Agrawal, Loh, & Shebi, 2015).

Furthermore, machine condition information facilitates improving
quality of scheduling decisions. Exploiting degradation modeling and
monitoring, Cholette, Celen, Djurdjanovic, and Rasberry (2013) con-
sidered preventive maintenance events and production sequencing
jointly to design an integrated decision policy, which achieves higher
expected profits than a traditional maintenance policy. Kao et al.
(2011) adopted a Markov decision process model to include machine
deterioration and determine the equipment maintenance and produc-
tion schedules for maximizing the long-run expected average profit.
These works mainly focus on a single tool or a set of homogeneous
tools.

Conventionally, machine condition-based job assignment or sche-
duling mostly relies on the domain experience and knowledge. Some
works have recently addressed equipment condition related scheduling
problems. For example, machine condition parameters are considered
in the optimal schedule to improve yield in Doleschal, Weigert, and
Klemmt (2015). But the machine condition is modeled as constant on
the whole scheduling horizon, which ignores the fact that the machine
condition is changing after processing wafers.

One of the common methods to evaluate the machine condition in
the Advanced Process Control (APC) framework is through calculating
an Equipment Health Indicator (EHI) (Holfeld, Barlovic, & Good, 2007;
Obeid, Dauzère-Pérès, & Yugma, 2012). By monitoring critical machine
parameters such as the temperature, voltage, pressure, etc., the overall
machine condition can be characterized by some consolidated EHIs.
The EHI not only provides an easy reading of the machine performance
for engineers but also serves as a basis for improving on production or
maintenance policy. To evaluate EHI, several methodologies have been
developed in the literature. The multivariate process capability index is
commonly used to integrate the multiple parameters into an overall EHI
(Chen & Wu, 2007). A recipe-independent EHI and its hierarchical
monitoring scheme are further proposed to evaluate the machine health
and diagnose the faults systematically (Blue, Gleispach, Roussy, &
Scheibelhofer, 2013; Chen & Blue, 2009). Applying EHI in production
control helps to identify the machine failures that prolong the pro-
duction cycle time and to improve the effectiveness of production
schedule.

Given the EHI of individual machines and the machine capability
requirement of each job based on its criticality, this paper addresses the
need of EHI-integrated scheduling over heterogeneous, parallel
batching machines. A batching machine is a machine on which a
maximum number of jobs (maximum batch size) of the same type can
be processed together in a batch with a fixed processing time. When
processing times at given stages are much longer than processing times
of the upstream stage, the adoption of batching machines is common in
practice as it reduces the average job waiting time. For example, most
furnaces in wafer manufacturing are batching machines as it takes
4–8 h to heat up, hold the temperature, and then cool down a furnace.
But the temperature curve, i.e. capability, may differ between furnaces
due to the furnace age, furnace supplier, cumulative processing time
after a maintenance, etc. Such long-term degradation and/or short-term
deterioration make the furnaces heterogeneous, or unrelated.
Heterogeneous parallel batching machines are widely adopted in var-
ious industries such as wafer packaging, ceramic sintering or bakeries,
making the proposed models extendable to other production systems
than wafer manufacturing.

This paper then shows that integrating EHI into production sche-
duling helps to trade-off decisions between productivity improvement
and quality risk reduction. It is obvious that assigning jobs only to a
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Fig. 1. (a) Long-term machine deterioration increases machine failure prob-
ability along time, where a dotted square is magnified in (b) to illustrate the
short-term machine deterioration with progressive production.
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