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A B S T R A C T

Cumulative sum and exponentially weighted moving average are also named as memory-type statistical process
control charts for they are good at quickly detecting the presence of small disturbances. This research study
proposes a new memory-type control chart. The aim of the study was to propose such a control charting statistic
that give a specific weight to the current sample and the remaining weight is equally distributed among the
previous samples. The performance of the proposed chart is measured in terms of average run length. The
evaluated performance is compared with some existing memory-type control charts and the superiority of the
proposed chart is established over its competitors. The effect of non-normality on the performance of proposed
chart is assessed using Gamma, Student’s t and Logistic distributions. The study found that design parameters of
the proposed chart can be adjusted to make it more robust to non-normality. Finally, the application of the
proposed chart is demonstrated using a real dataset from substrates manufacturing process where flow width of
the resist is the quality characteristic to be monitored.

1. Introduction

Quality management makes use of a number of engineering and
management techniques to create a good quality product. Sometimes
the product is some sort of physical good while in other situations it
may be services. It is always essential to manufacture products with the
quality which can fulfill the clients’ need i.e. our primary concern
should be satisfaction of clients. If the client is not satisfied with the
quality of product, the company will find it difficult to sell its products
no matter what is its cost. In extreme situations, the client may take his/
her business somewhere else. This is where SPC comes in handy. With
the application of control charts, companies can monitor their processes
and produce quality products. Through statistical control, “the process
has an identity; its performance is predictable.” Special causes of variation
can be detected and eliminated. Through the elimination of special
causes, we can manufacture a product in such a way that it satisfies the
client. Also, optimality can be achieved in productivity and output
regulation. In the other words, the chances of producing scrap are re-
duced.

Page (1954) and Roberts (1959) proposed cumulative sum
(CUSUM) and exponentially weighted moving average (EWMA) charts,
respectively, which are intended to detect small and moderate shifts
quickly. They are designed to utilize present and past information in
such a way that the small and persistent shifts are accumulated.

For the performance evaluation of control charts, Average Run

Length (ARL) is a popular measure. The ARL is “the average number of
points that must be plotted before a point indicates an out-of-control con-
dition”. ARL0 and ARL1 are the notations commonly used for in-control
and out-of-control ARLs, respectively. For a relative comparison be-
tween the two charts, we fix their ARL0 and compare the ARL1 values.
The chart with the smaller ARL1 values is considered superior.

The ARLs for the Shewhart-type charts are easy to compute because
the successive statistics are independent. So, simply taking the re-
ciprocal of power gives us the ARL (cf. Montgomery (2009, p. 191)). For
CUSUM and EWMA-type control chart, the ARL values are obtained by
generating a run length variable and then averaging it; with these
charts the successive statistics are not independent.

For a two-sided CUSUM chart, we plot the two statistics +Si and −Si
against single control limit H . These plotting statistics are defined as:
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where i is the sample number, Y is the sample mean of study variable Y ,
μ0 is the target mean of Y , K is the reference value of CUSUM scheme
often taken equal to the half of the amount of shift which we are in-
terested to detect (cf. Ewan and Kemp (1960) and Sanusi, Abbas, and
Riaz (2018)). The initial values of these two statistics are set equal to
zero i.e. = =+ −S S 00 0 . Now we plot these two statistics against the
control limit H and it is concluded that the process mean has moved
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upward if >+S Hi for any value of i whereas the process mean is said to
be shifted downwards if >−S Hi for any value of i. The CUSUM chart is
defined by two parameters i.e. K and H which are to be chosen very
carefully because the ARL performance of the CUSUM chart is very
sensitive to these parameters. These two parameters are used in the
standardized manner (cf. Montgomery (2009, p. 404)) given as:

= × = ×K k Y H h YVar( ) , Var( ) (2)

where =Y σ nVar( ) /Y , σY is the standard deviation of Y and n is the
sample size.

The plotting statistic of an EWMA chart is based on assigning
weights to the data such that the most recent observation gets a larger
weight, while less recent observation gets smaller weights, i.e. the
weights are exponentially decreasing as the observations becomes less
recent (cf. Hunter (1986)). The EWMA statistic for monitoring Y is
given as:

= + − −Z λY λ Z(1 )i i i 1 (3)

where λ is the smoothing constant such that < ⩽λ0 1. λ can also be
viewed as the sensitivity parameter of the EWMA control chart, i.e. for
smaller values of λ, the EWMA chart becomes more sensitive to the
smaller shifts, whereas for larger values of λ, the EWMA chart becomes
more sensitive to the moderately larger shifts (cf. Crowder (1989), Riaz,
Riaz, Hussain, and Abbas (2017) and Sanusi, Riaz, Adejoke, and Xie
(2017)). The initial value for Zi (i.e. Z0) is taken equal to the target
mean μ0. The mean and variance of the EWMA statistic in (3) are given
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, respectively. The control limits of the
EWMA chart based on this mean and variance are defined as:
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where is the control limit coefficient, which is chosen according to the
value of λ and pre-specified ARL0.

For a control chart, it is desired to have smallest possible ARL1
values while the ARL0 should be maintained at a fixed level. To attain
this objective, several modifications of the CUSUM and EWMA charts
have been proposed. To mention but a few of them: Lucas (1982) and
Capizzi and Masarotto (2010) introduced the combined Shewhart-
CUSUM and combined Shewhart-EWMA charts, respectively, so that
their sensitivity for the larger shifts, gets increased; Lucas and Crosier
(1982) applied the fast initial response (FIR) feature with CUSUM chart
in which the starting value of the CUSUM statistics is set equal to some
function of h, followed by Lucas and Saccucci (1990) applying the FIR
feature on EWMA chart; Crosier (1986) proposed a new two-sided
CUSUM chart in which the sensitivity parameter k is multiplied with
the latest observation to push the value of statistic towards zero;
Waldmann (1996) proposed the use of simultaneous application of two
CUSUM charts; Capizzi and Masarotto (2003) introduced adaptive
EWMA control chart in which the weights given to the past information
are updated; Jiang, Shu, and Aplet (2008) proposed an adaptive
CUSUM chart in which the k is updated on every sample using EWMA
based estimator; Al-Sabah (2010) proposed the use of ranked set sam-
pling (RSS) procedure with the control structure of CUSUM chart; Riaz,
Abbas, and Does (2011) and Abbas, Riaz, and Does (2011) introduced
the application of runs rules schemes with CUSUM and EWMA charts,
respectively; Abbas, Riaz, and Does (2013) proposed a mixed EWMA-
CUSUM (MEC) chart that is even more sensitive to the smaller shifts in
the process location; Ali and Riaz (2014) proposed a CUSUM control
chart based on models having increasing or decreasing failure rate; Wu,
Yu, and Zhuang (2017) studied the properties of enhancements of a
robust likelihood CUSUM control chart; Li, Xie, and Zhou (2018) pro-
posed a non-parametric ranked based EWMA control chart for the si-
multaneous monitoring of process location and dispersion.

In the current study we also propose a new memory type control
chart, for monitoring the process location, named as homogeneously
weighted moving average (HWMA) control chart. Rest of the article is
organized as: details regarding the proposed chart are given in the next
section which is further divided into sub-sections; Section 2.1 provides
the comparison of the proposed HWMA chart with the other memory
type control charts; Section 2.2 gives the ARL performance of the
proposed chart when the underlying distribution is not normal; Section
2.3 explains the estimation effects on the performance of HWMA chart;
Section 3 provides the application of the proposed chart with a real
dataset; finally Section 4 gives the findings of this article.

2. Design of the proposed HWMA control chart

Let ∼X N μ σ( , )i j,
2 be the quality characteristic to be monitored,

where = ……i 1,2,3, and = ……j n1,2,3, , . Initially, we consider both the
population parameters μ and σ to be known i.e. =μ μ0 and =σ σ2

0
2 and

we name this as Case-K. The plotting statistic for HWMA chart is de-
fined as:

= + − −H ωX ω X(1 )i i i 1 (5)

where Xi is the sample average for ith sample. ω is the smoothing con-
stant (called the sensitivity parameter of the HWMA chart) selected
between zero and one i.e. < ⩽ω0 1. −Xi 1 is the mean of means of
previous −i( 1) samples and is given as:

=
∑

−−
=

−

X
X

i 1i
k
i

k
1

1
1

(6)

The value of X0 is set equal to the target mean of X i.e. μ0. Hi in (5)
can be rewritten as:
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The rationale of the statistic given in (7) is to give ω weight to the
current sample and the rest of the −ω(1 ) weight is homogeneously
distributed to all the previous samples. The control limits for the
HWMA chart can now be defined as:

= − = = +LCL E H C V H CL E H UCL E H C V H( ) ( ) , ( ), ( ) ( )i i i i i i i

(8)

The mean and variance for Hi (i.e. E H( )i andV H( )i , respectively) for
an in-control situation are derived in Appendices B.1 and B.2, respec-
tively. Using the mean and variance of Hi, the control limits of HWMA
chart from (8) become:
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where C determines the width of the control limits and it is decided
based on the desired ARL0. Table 1 contains the values of C for different
combinations of ω and ARL0, and Table 2 contains the out-of-control
zero-state ARL and standard deviation run length (SDRL) performance
of the proposed chart when our desired ARL0 is equal to 500. Similar
tables for the other ARL0 values can also be obtained easily.

The results in Tables 1 and 2 are based on 105 Monte Carlo simu-
lations run in R language and the shift parameter = −δ μ μ

σ n
| |

/
1 0
0

where μ1
denotes out-of-control mean. The relative standard errors of the results
in Tables 1 and 2 are less than 1%. One of the values from Table 2 is
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