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A B S T R A C T

We consider the inspection scheduling problem of multi-unit systems where the inspections of individual units
are coupled via a capacity constraint. Although the optimal inspection policy of the majority of single-unit
systems can be characterized by a threshold policy, finding an optimal policy for multi-unit systems is sig-
nificantly harder. Therefore, the current state-of-the-practice uses a periodical inspection policy for all units.
Instead, we propose using a dynamic programming (DP) approach to solve small-scale problem instances to
optimality and use solutions optimized for a single-unit system in an approximation scheme to obtain near-
optimal solutions for large-scale problems. Our results show that taking individual properties of the units to be
inspected into account and incorporating the single-unit solutions within an approximate DP framework sig-
nificantly decrease the inspection cost compared to a periodical inspection policy. The proposed methods can
help resource-constrained regulatory agencies such as US Food and Drug Administration (FDA) to optimize their
inspection activities.

1. Introduction

Inspection and maintenance scheduling of multi-unit systems under
limited budget have important applications in various industries such as
pharmaceutical and food supply chains, transportation, and manu-
facturing. For some of these industries, lack of or poorly planned in-
spection activities could involve significant risks. For example, in 2008,
81 people died due to use of tainted Heparin, a widely used antic-
oagulant medicine. This unfortunate event initiated a heated debate on
quality practices in drug manufacturing and the need for stricter in-
spection regulations in the pharmaceutical industry (Gardiner, 2008).
The current state of the practice mandates inspection of all pharma-
ceutical suppliers every two years (Klimberg, Revelle, & Cohon, 1992).
As a result, FDA had to increase its inspection budget to afford more
frequent inspection-related activities (FDA, 2014; Palmer, 2013). Other
examples in which human lives are put at risk due to ineffective in-
spection policies include transportation networks and food supply
chains. Effective inspection of traffic signs and lights, roads, and critical
infrastructure such as bridges in a transportation network are of crucial
importance as the deterioration in the condition of any of these com-
ponents can have devastating consequences (Chen, 2017; Galambos,
2008). Similarly, inability to timely detect contaminated products in
food supply chains could cause salmonella outbreaks and pose a risk to
public health (Aung & Chang, 2014). Therefore, effective and efficient
planning of inspection and corrective maintenance activities in such

multi-unit systems is of great importance.
Our aim in this paper is to develop a mathematical model to find

optimal inspection schedules in a system consisting of multiple units
(e.g., suppliers in a pharmaceutical network or critical infrastructure
such as bridges within a transportation network) over a long planning
horizon. The condition of each unit stochastically changes with a un-
ique degradation probability distribution and an associated cost. The
decision maker, who is responsible for inspecting and, if necessary,
maintaining each unit on a continuous basis, has limited resources for
these activities.

Inspection of pharmaceutical supply chains provides a motivating
example for our model. One interesting aspect of this problem is that
the cost of shipping a tainted drug to health care providers is very high
as it may result in fatalities. Moreover, it may take a very long time
before the adverse effect of a tainted drug is realized, and a causal re-
lationship between the adverse events (e.g., fatalities) and the tainted
drug is established. Therefore, we define the state of each unit (e.g.,
pharmaceutical supplier) to be either “in-control”, supplying high-
quality products, or “out-of-control”, supplying tainted products.
Because it typically takes a long time to realize the adverse effects of a
failure event causing a unit transition into an out-of-control state, we
assume that the true state of a unit can only be known through in-
spection. If we find a unit to be out-of-control as a result of an in-
spection, the unit undergoes certain maintenance activities to ensure
that it will be in-control in the subsequent period.
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The goal is to find an inspection scheduling policy that minimizes
the overall cost, composed of the costs of inspection, maintenance, and
missed detection of an out-of-control unit, over a long planning hor-
izon. The costs across units might vary. Inspection cost depends on
whether it is done using in-house resources or outsourced. Maintenance
cost includes the cost of all activities performed to rectify an out-of-
control unit back to an in-control condition. Other costs such as salvage
cost and the cost of unsatisfied demand can also be included as part of
the maintenance cost. The cost of missed detection of an out-of-control
unit may include the cost associated with fatalities due to tainted
products reaching customers and any related lawsuits. For example, in
the Heparin case, tainted heparin produced by an out-of-control drug
manufacturer may cause harm to patients. This cost may also include
the cost of returned defective products and loss of trust between dif-
ferent suppliers within a multi-tier supply chain.

We also assume that there is a limit on the number of inspections
that can be performed in a given period. This assumption can easily be
relaxed for those situations where there is a budget limit on the amount
of inspection-related expenses in a given period. Due to this capacity
limit, it may not be possible to inspect every unit periodically.
Furthermore, these types of periodic inspection scheduling policies may
not represent the best use of resources. Certain units with a higher
degradation probability (e.g., drug manufacturers without quality im-
provement programs) may need more scrutiny. Other units with a lower
degradation probability (e.g., high-quality drug manufacturers) can be
inspected less frequently.

A dynamic inspection scheduling strategy can allocate limited in-
spection budget to different units over a long planning horizon opti-
mally considering individual degradation probability distributions, the
latest inspection results from the earlier periods, and various costs.
Therefore, we model this problem using a dynamic programming (DP)
framework (Puterman, 1994). It is a well-known fact that, for large-
scale problems (in our case, systems with a large number of units), DP
algorithms can quickly become intractable (Powell, 2007). As presented
in the numerical results section, the proposed DP model with more than
four units cannot be solved within a reasonable time limit when the
value iteration algorithm, a very well-known DP solution method
(Bertsekas, 1995), is applied. Therefore, we develop approximation
strategies to find near-optimal solutions for inspection problems having
a large number of units to be inspected. Based on numerical results and
analysis, the optimal solution can be easily characterized when the
system to be inspected involves a single unit. Using the optimal solution
of a single-unit model, we propose an approximation scheme where the
value function of the original multi-item problem is approximated (see
Section 3 for details). Numerical results show that our proposed ap-
proximation scheme produces high-quality near-optimal solutions with
significant performance improvements over periodic inspection po-
licies.

Our research has many common aspects with machine replacement
and maintenance optimization literature. Machine replacement re-
search was initiated in the 50’s and 60’s with a focus on problems in-
volving a single machine and two feasible actions: repair (replace) or do
nothing (Derman, 1963). Earlier studies focused on characterizing the
structure of optimal maintenance policies using Markovian deteriora-
tion models to describe the change in the unit’s condition over several
periods (Kolesar, 1966; Ross, 1967). Later, these models were extended
to include inspection decisions to reveal the actual state of the machine
(Ross, 1971; Rosenfield, 1976). Several structural results characterizing
the optimal timing of when to inspect and repair have been proven.
Rosenfield (1976), for example, investigated the value of obtaining
information about the condition of a single unit via inspection by
considering several feasible actions including “inspect”, “repair” and
“no action.” He showed that the optimal policy has a special structure,
in which the state space is divided into at most four regions, in each of
which, a single action is optimal. Later, these studies were generalized
to the inspection and replacement of a single-unit system by relaxing

various assumptions on the cost structure, deterioration model, and
maintenance strategies (Hopp & Wu, 1990; Lam & Yeh, 1994). In later
years, the machine replacement problem was generalized to multiple
stochastically deteriorating machines (McClurg & Chand, 2002;
Moghaddam & Usher, 2011). The optimal replacement policy in these
problems is generally characterized by “no splitting” or “worse cluster
replacement” rules. The basic idea is that if it is optimal to replace a
machine in a particular condition than it is optimal to replace all ma-
chines having the same or worse condition. Even though such results
are insightful, these models fail to capture many important aspects of
many real-world problems, such as limited budget allocated for ma-
chine replacement in each decision period.

Maintenance optimization problems have also been extensively
studied, with numerous surveys detailing this work (Garg & Deshmukh,
2006; Nicolai & Dekker, 2008; Sharma, Yadava, & Deshmukh, 2011).
They are generally classified based on whether the degradation of the
system is modeled in continuous (Dieulle, Berenguer, Grall, &
Roussignol, 2003) or discrete time (Amari & McLaughlin, 2004;
Tamura, 2007); if the system is composed of a single unit (Crespo
Marquez & Sánchez Heguedas, 2002; Valdez-Flores & Feldman, 1989)
or multiple units (Nicolai & Dekker, 2008; Wang, 2002); and whether
maintenance activities restore the unit condition to the best possible
(“like-new” or “perfect”) level (Grall, Berenguer, & Dieulle, 2002) or
not (Pignal, 1987; Rangan & Grace, 1989). Our model is most related to
the discrete-time maintenance optimization models with multiple units
and perfect maintenance as, in our model, we assume that if a unit is
found to be “out-of-control” in the current period, its condition is re-
stored to be “in-control” in the subsequent period via possibly some
maintenance activity.

Several scheduling policies have been proposed for maintenance of
multiple units including age-based (Scarf, Cavalcante, Dwight, &
Gordon, 2009), condition-based (Camci, 2009; Tian & Liao, 2011),
group maintenance (Sheu & Jhang, 1997), and block replacement po-
licies (Sheu, 1991). For example, Ritchken and Wilson (1990) proposed
a group maintenance policy in which an entire group of units receives
maintenance when a certain fraction of those units fail or reach a cer-
tain age. Sheu and Jhang (1997) generalized the group maintenance
policy by classifying failures into two types (minor and catastrophic)
and divided the lifetime of a unit into two phases so that different
policies could be assigned to different phases. In particular, their
maintenance policy allows minimal repairs for minor failures
throughout the lifetime of the unit whereas, in case of a catastrophic
failure, it either replaces (in early phases of a unit’s lifetime) or leaves
the unit idle (in later phases). Sheu (1991) proposed a block replace-
ment policy that replaces the system periodically and repairs it after a
failure. In a closely related work, Grigoriev, van de Klundert, and
Spieksma (2006) proposed several integer programming formulations
for a periodic maintenance problem of multiple machines, each having
a specific servicing cost. Their model allows only one machine to be
serviced in a given period and the operating cost of each machine is a
linear function of time since the last servicing. Kuschel and Bock (2016)
also proposed an integer programming formulation that optimizes the
total cost of system maintenance by optimizing the scheduling of a pre-
determined set of maintenance activities over a finite planning horizon.
Their model does not take into account stochastic degradation of system
components. Gustavsson, Patriksson, Strömberg, Wojciechowski, and
Önnheim (2014) proposed a different integer programming based for-
mulation to optimize scheduling of preventive maintenance activities
considering deterministic degradation functions.

In contrast to studies reviewed above, in our model, there is a ca-
pacity limit on the maximum amount of inspections that can be per-
formed in a decision period. Also, each unit has a different degradation
probability distribution and associated cost. Decisions of which units to
inspect in each period are made dynamically by considering the state of
each unit instead of a static policy that assumes the same decision for a
group of units. Moreover, because of the capacity limit on the
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