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A B S T R A C T

Wagner and Whitin (1958) develop an algorithm to solve the dynamic Economic Lot-Sizing Problem (ELSP),
which is widely applied in inventory control, production planning, and capacity planning. The original algo-
rithm runs in O T( )2 time, where T is the number of periods of the problem instance. Subsequently, other re-
searchers develop linear-time algorithms to solve the Wagner-Whitin (WW) lot-sizing problem; examples include
the ELSP and equivalent Single Machine Batch-Sizing Problem (SMBSP). This paper revisits the algorithms for
the ELSP and SMBSP under WW cost structure, presents a new efficient linear-time algorithm, and compares the
developed algorithm with equivalent algorithms in the literature. The developed algorithm employs a lists and
stacks data structure, which is a completely different approach than that of the comparable algorithms for the
ELSP and SMBSP. Analysis of the developed algorithm shows that it executes fewer different actions throughout
and hence it improves execution time by a maximum of 51.40% for the ELSP and 29.03% for the SMBSP.

1. Introduction

The Economic Lot-Sizing Problem (ELSP) is an important issue in
production and inventory control. Typically, a product is created or
purchased in batch quantities and placed in stock. As the stock is de-
pleted, more production or procurement must take place to replenish it.
The main objective of the ELSP is to determine an optimum production
or replenishment policy for a manufacturing or inventory system to
meet the required market demand with the least possible expenditure.
This policy decision is crucial, so it is a matter of interest for many
researchers. Harris (1913) introduces his well-known and fundamental
Economic Order Quantity model, in which he assumes demand to be a
continuous function over time. However, Wagner and Whitin (1958)
provide a different approach to solving the lot-sizing problem. They
consider time in discrete periods and assume that demand in each
period is known in advance.

Wagner and Whitin (1958) develop a forward recursion algorithm
to obtain a minimum total cost inventory management scheme, which
satisfies demand known a priori in every period. They consider un-
capacitated (i.e., without bounds on production and inventory) lot-
sizing problems for a single-item inventory system. Their algorithm’s
main assumption is that an item produced in a period can satisfy the
demand in that and subsequent periods. Any item incurs setup and unit
production costs, and any item carried to the next period incurs a unit

inventory holding cost. The goal is to find a minimum cost production
plan. The Wagner-Whitin (WW) algorithm runs in O T( )2 time, where T
is the number of periods of the problem instance. Wagelmans, Hoesel,
and Antoon (1992) develop a linear-time algorithm (based on a geo-
metric approach) for special cases of the WW problem where produc-
tion and holding costs remain constant. Aggarwal and Park (1993)
identify that the ELSP gives rise to Monge arrays (a special type of 2×2
array in which the four elements at the intersection points are such that
the sum of the upper-left and lower-right elements across the main
diagonal is less than or equal to the sum of the lower-left and upper-
right elements across the antidiagonal). Employing the properties of a
Monge array, Aggarwal and Park provide a linear-time algorithm for
the WW problem. Albers and Brucker (1993) study the complexity of
the single machine batch-sizing problem (SMBSP) and develop an al-
gorithm for the shortest path problem that can be solved in linear time.
The SMBSP can be defined as follows. Suppose there are n jobs, with
given processing times, to be processed in batches on one machine. A
batch is a set of jobs that is processed together. The number of jobs in a
batch is called the batch size. The production of a batch requires ma-
chine setups, which are assumed to be both sequence- and machine-
independent. The problem is to find the optimal batch size that mini-
mizes the total flow time. Flow time of a batch is the sum of the pro-
cessing times of all jobs in that batch plus the machine setup time.
Therefore, all jobs in a batch have the same flow time.
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The Wagelmans et al. (1992) and Aggarwal and Park (1993) algo-
rithms are famous in the field of ELSP and obtain excellent results in
terms of time complexity. This paper revisits these algorithms and
presents a new linear-time algorithm for the ELSP under WW cost
structure. The developed algorithm employs a lists and stacks data
structure, which is a completely different approach than that of the
existing algorithms (Aggarwal & Park, 1993; Wagelmans et al., 1992) in
the literature. We match our result with the other algorithms (Aggarwal
& Park, 1993; Wagelmans et al., 1992) for the ELSP and find that the
new algorithm takes less CPU time and performs fewer various opera-
tions. The ELSP is equivalent to the SMBSP (see Section 4), so the de-
veloped algorithm is also applicable for solving the SMBSP. The de-
veloped algorithm is compared with the Albers and Brucker (1993)
algorithm for the SMBSP and demonstrates its superiority in terms of
various metrics of comparison. For the ELSP, we assume that holding
costs are stationary but setup costs are time variant. However, for the
SMBSP, we assume that setup costs for every job are constant.

The rest of this paper is organized as follows. Section two reviews
the related work in the literature. Section three provides a simpler
linear-time algorithm for the WW dynamic program and its proofs.
Section four illustrates how the developed algorithm can be im-
plemented for the SMBSP. The fifth section presents a numerical ex-
ample showing the implementation of the developed algorithm. Section
six illustrates the computational results assessing the new algorithm’s
performance. Finally, the seventh section represents the conclusion.

2. Literature review

During the 1980s and 1990s, many researchers improve the com-
putational complexity of the algorithms for the simple uncapacitated
ELSP. Evans (1985) presents an efficient computer implementation of
the WW algorithm, which is an O T( )2 time dynamic programming re-
cursion, whereT denotes the number of periods. He exploits the special
structure of the problem, which requires low core storage, enabling it to
be potentially useful and efficient for solving lot-sizing problems.

There are many studies in the literature that discuss the improvement
opportunities of the Wagner-Whitin algorithm to solve the single-item
uncapacitated dynamic ELSP. Federgruen and Tzur (1991) develop a
simple forward algorithm, which can be implemented in O TlogT( ) time
and O T( ) space for the dynamic ELSP. They also provide linear-time al-
gorithms for two distinct cases: (i) models without speculative motives for
carrying stock and (ii) models with nondecreasing setup costs. Wagelmans
et al. (1992) develop a backward dynamic programming recursion for the
uncapacitated ELSP that runs in O T( ) time for the WW case and O TlogT( )
time for a more general case, where marginal production costs differ be-
tween periods and all cost coefficients are unrestricted in sign. Aggarwal
and Park (1993) show that the dynamic programming formulation of the
uncapacitated ELSP gives rise to the Monge array, and they prove that the
structure of the Monge arrays can be exploited to obtain a significantly
faster algorithm. They present an O TlogT( ) time algorithm for both basic
and backlogging ELSPs when the production, inventory, and backlogging
costs are linear, and they show that for the special case of the WW model,
this algorithm runs in O T( ) time.

van Hoesel, Wagelmans, and Moerman (1994) also consider the
Wagner and Whitin (1958) dynamic ELSP and generalize the algorithms
developed by Federgruen and Tzur (1991) and Wagelmans et al. (1992)
by introducing two basic geometric techniques to solve the ELSP in
O TlogT( ) time. They prove that if there is no speculative motive to hold
inventory, the ELSP can be solved in O T( ) time. They discuss the for-
ward and backward recursions for lot-sizing problems and the extension
to the model, which allows backlogging, lot-sizing with start-up costs,
and a generalized version of the model with learning effects in setup
costs. They also show that the techniques used by Federgruen and Tzur
(1991) and Wagelmans et al. (1992) are essentially the same.

Albers and Brucker (1993) study the complexity of the SMBSP for a
fixed job sequence and develop a backward recursion algorithm that

runs in O n( ) time, where n denotes the number of jobs. Baki and
Vickson (2003) consider a lot-sizing problem in which a single operator
completes a set of n jobs requiring operations on two machines. They
develop an efficient algorithm for minimizing maximum lateness that
can be solved in O n( ) time for both open and flow-shop cases. Mosheiov
and Oron (2008) address the SMBSP to minimize total flow time for
bounded batch sizes. They assume identical processing time for all jobs
and identical setup time for all batches and introduce an efficient so-
lution approach for both cases of an upper and a lower bound on the
batch sizes. Li, Ishii, and Masuda (2012) extend Mosheiov and Oron
(2008) by introducing a flexible upper bound for batch sizes, with the
objectives of maximizing customer satisfaction and minimizing max-
imum completion time and flow time.

Teksan and Geunes (2015) provide a polynomial-time algorithm for
the dynamic ELSP with convex costs in the production and inventory
quantities. They consider a classic discrete-time, finite-horizon, un-
capacitated, single-stage, dynamic lot-sizing problem with no back-
logging. The resulting time complexity of their algorithm is O T logT( )2 .

Archetti, Bertazzi, and Grazia Speranza (2014) investigate an un-
capacitated ELSP with two different cost discount functions. The first is
the modified all unit discount cost function, which is piecewise and
linear. They show that the problem can be solved in O I T( )2 3 time
complexity, where I is the number of echelons andT is the length of the
discrete finite horizon. The second is the incremental discount cost
function, which is increasing, piecewise, and linear. They show that the
ELSP can be solved using a more efficient polynomial algorithm with an
O T( )2 time complexity.

Akbalik and Rapine (2013) study the complexity of a single-item
uncapacitated lot-sizing problem with batch delivery, focusing on the
general case of time-dependent batch sizes. They allow incomplete
batches (fractional batches) in their model, with known demand over
the planning horizon. They do not allow backlogging. They establish
that if the cost parameters (setup cost, fixed cost per batch, unit pro-
curement cost, and unit holding cost) are allowed to be time dependent,
the problem is NP hard. By contrast, if all cost parameters are stationary
and no unit holding cost is assumed, the problem is polynomially sol-
vable in O T( )3 time. They also show that in the case of divisible batch
sizes, the problem of time-varying setup costs can be solved in time
O T logT( )3 if there are no unit procurement or holding cost elements.

Wang, He, Sun, Xie, and Shi (2011) also study a single-item un-
capacitated lot-sizing problem. They develop an O T( )2 time algorithm
to determine the lot sizes for manufacturing, remanufacturing, and
outsourcing that minimizes the total cost, which consists of the holding
costs for returns, manufactured and remanufactured products, setup,
and outsourcing costs. Chu, Chu, Zhong, and Yang (2013) consider an
uncapacitated single-item lot-sizing problem with outsourcing/sub-
contracting, backlogging, and limited inventory capacity. The back-
logging level at each period is supposed to be limited. The authors show
that this problem can be solved in O T logT( )4 time. Fazle Baki, Chaouch,
and Abdul-Kader (2014) discuss the ELSP with product return and re-
manufacturing and show that this kind of problem is NP hard. Retel
Helmrich, Jans, van den Heuvel, and Wagelmans (2015) study the ELSP
with an emission constraint. They show that ELSP with emission con-
straint is NP hard and propose several solution methods.

Hsu (2000) introduces an O(T4) time algorithm for the dynamic
uncapacitated ELSP with perishable inventory under age-dependent
holding costs and deterioration rates, where all cost functions are
nondecreasing concave. Hsu (2003) extends Hsu (2000) by allowing
backlogging in the model and gives an algorithm that runs in O(T4)
time under some assumptions on cost functions and demand. Sargut
and Işık (2017) extend Hsu (2003) by incorporating production capa-
city in the dynamic ELSP and provide a dynamic-programming-based
heuristic for the solution of the overall problem.

Studies are ongoing to incorporate capacity constraints as an ex-
tension to the WW algorithm. Bitran and Yanasse (1982) show that
Capacitated Lot-Sizing Problems (CLSPs) belong to the class of NP-hard
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