Accepted Manuscript

Optimization algorithms for proportionate flowshop scheduling problems with variable maintenance activities

Chen-Yang Cheng, Kuo-Ching Ying, Hsia-Hsiang Chen, Jia-Xian Lin

PII:	\$0360-8352(18)30034-2
DOI:	https://doi.org/10.1016/j.cie.2018.01.027
Reference:	CAIE 5060
To appear in:	Computers & Industrial Engineering
Received Date:	20 September 2017
Revised Date:	17 January 2018
Accepted Date:	30 January 2018

Please cite this article as: Cheng, C-Y., Ying, K-C., Chen, H-H., Lin, J-X., Optimization algorithms for proportionate flowshop scheduling problems with variable maintenance activities, *Computers & Industrial Engineering* (2018), doi: https://doi.org/10.1016/j.cie.2018.01.027

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Optimization algorithms for proportionate flowshop scheduling problems with variable maintenance activities

Chen-Yang Cheng^a, Kuo-Ching Ying^{a,*}, Hsia-Hsiang Chen^a, Jia-Xian Lin^{a,b}

^a Industrial Engineering and Management, National Taipei University of Technology, Taipei, Taiwan ^b Nanya Technology Corporation, New Taipei City, Taiwan

ABSTRACT

Proportionate permutation flowshop (PPF) is a class of flowshop problems that has appeared in the literature since the early 1980s. However, no research has been conducted on PPF with variable maintenance activities (VMAs). To remedy this research gap, this study proposed optimization algorithms for six PPFs with equal- and unequal-duration VMAs, aiming to minimize their total completion time, maximum lateness, and maximum tardiness, respectively. All the problems studied here were optimally solved in polynomial times using the proposed algorithms. Accordingly, the proposed optimization algorithms could be applied by decision-makers in actual PPF scheduling environments.

Keywords: Scheduling; Proportionate permutation flowshop; Variable maintenance activities; Optimization algorithm

* Corresponding Author. Tel.: +886 2 2771 2171; fax: +886 2 2731 7168
E-mail address: kcying@ntut.edu.tw (K.-C. Ying).

Download English Version:

https://daneshyari.com/en/article/7541411

Download Persian Version:

https://daneshyari.com/article/7541411

Daneshyari.com