
Computation of the scattering matrix of guided acoustical propagation
by the Wave Finite Element approach

A. Kessentini a,b, M. Taktak a,⇑, M.A. Ben Souf a, O. Bareille b, M.N. Ichchou b, M. Haddar a

aMechanics, Modelling and Production Laboratory (LA2MP), National School of Engineers of Sfax, University of Sfax, BP. 1173, Sfax 3038, Tunisia
b Laboratoire de Tribologie et Dynamique des Systèmes (LTDS), Ecole Centrale Lyon, 36 Avenue Guy de Collongue, 69134 Ecully Cedex, France

a r t i c l e i n f o

Article history:
Received 26 March 2015
Received in revised form 24 July 2015
Accepted 8 September 2015
Available online 9 October 2015

Keywords:
Finite Element
WFE
Acoustical propagation
Waveguide
Scattering

a b s t r a c t

This work aims to study the guided acoustical propagation. The Wave Finite Element method is applied
rather than the classic Finite Element method. Finite Element libraries are used for an elementary portion
modelling. The dynamic stiffness matrix is then calculated. Periodicity conditions lead to a simple eigen-
value problem and the wave basis can be extracted. The dynamic stiffness matrix of the coupling ele-
ments corresponding to the lined parts can be also calculated considering the acoustical impedance.
The use of the coupling’s conditions provides the scattering matrix. Within the framework of this method,
the dispersion curves, the evolution of the scattering coefficients and the forced response to pressure
excitations for both single and coupled waveguides can be represented, and compared to the FE method.
The WFE method, treated in literature, and its main interests are reviewed, while adding the impedance
notion into the calculation of the scattering matrix.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The acoustical guided waves propagation has been one of the
important issues dealt with in literature, as it has several engineer-
ing applications such as compressors, aircraft engines, and ventila-
tion systems. Acoustic liners are the most common method used to
reduce noise emissions. Acoustical propagation and sound scatter-
ing inside ducts with impedance discontinuities can be fully
described by the scattering matrix [1]. Hence, it will be worth find-
ing ways to express the scattering matrix regarding the multi-
modal character of the guided acoustical propagation and almost
realistic conditions.

Many theoretical works were developed to characterize the
acoustical propagation and scattering inside ducts. Works based
on the analytical theory such as [2–4] used a projection over a basis
of orthogonal functions. Bi et al. [3] introduced a coupling matrix
which defines the coupling between modes with same circumfer-
ential order m, and a subsequent method for the construction of
the scattering matrix. These works were done for a cylindrical duct.
However, for complex geometries, it can be a difficult task to
express the acoustic pressure within a duct. Numerical methods
of sound propagation modelling in three-dimensional were also
proposed in previous works [5,6]. These methods were based on

a three-dimensional Finite Element formulation, and results of
the proposed numerical methods were validated by a comparison
with the analytical results. Nevertheless, Finite Elements models
become impractical for high frequencies leading to a lack of accu-
racy or a long computing time and problems of CPU capacity. Sev-
eral experimental procedures were also dealt with for the multi-
modal measuring of the acoustical scattering matrix [7–10]. These
experimental methods were performed for a frequency range such
as the first five modes are cut-on. This gave the possibility to com-
pute a 100� 100 scattering matrix, and the results were compared
to theoretical results.

Several waveguides can be considered as uniform in one direc-
tion. This may concern any cross section, but the waveguide must
have the same geometric and physical properties along the axis of
propagation. Another approach, starting from the said hypothesis,
is to model only one small substructure of a waveguide using the
conventional FE method, then apply periodicity conditions pro-
vided by the continuity of the acoustical pressure and particles
velocity in the left and right sides between two consecutive sub-
structures. This is called the Wave Finite Element method (com-
monly said the WFE method), and its formulation leads to an
eigenvalue problem whose solutions give wave characteristics
[11,12]. Eigenvalues come in pairs ðl;1=lÞ, corresponding to for-
ward going and backward going waves. State vectors can be
expanded in terms of wave modes given by the eigenvectors, and
wave amplitudes. This approach seems to be so interesting. First,
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commercial Finite Element packages and element libraries are
used for modelling the segment, and then there is no need for more
Finite Element formulations. Second, even for arbitrary sections of
waveguides, the model’s size is chiefly little, and this can be a solu-
tion for the Finite Elements limits for high frequencies.

Cross-sectional modes start to appear as the frequency
increases. Within the WFE framework, the mesh density can be
adjusted to add high-order wavemodes to the wave basis. The
WFE method has been extensively used in previous works for
studying the wave propagation for beam-like structures [13],
fluid-filled pipes [14,15], laminates [16], tyres [17], and damaged
structures for damage detection and sizing purposes [18,19]. Some
solutions for the numerical issues of the method were proposed by
[20,21], and a projection on a reduced set of shape functions was
developed by [21] for the complex cross-sectional waveguides.

In this paper, the WFE method is exploited to study the scatter-
ing through lined parts of the acoustical waveguides. The acousti-
cal impedance modelling the damping due to the fluid–structure
interaction in lined walls can be numerically introduced. We will
be able then to calculate the scattering matrix considering the con-
tinuity in the interfaces of the coupling element. Thanks to the
multi-modal aspect of the method, high-order modes scattering
and conversion between modes are studied.

This paper is organized as follows: The WFE method is summa-
rized in Section 2. Section 3 deals with acoustical applications for
the WFE method. In this section, an example of a hard-walled duct
is first considered. Next, scattering due to lined parts is studied.
The scattering matrix formulation is presented, and the forced
response is expressed. In Section 4, formulations are numerically
validated, and results are discussed. Finally, concluding remarks
are given in Section 5.

2. Review of the WFE method

The WFE method provides numerically the different properties
of waves propagating in periodic waveguides. A waveguide is sup-
posed to be composed by identical segments which are modelled
using same FE models and are linked along a principal axis, called
direction of propagation (see Fig. 1). The length of each one is
noted d. The meshing compatibility of coupling interfaces gives
the same nodal distribution in the left and right faces. That means
that each face is supposed to have the same degree of freedom, say
n. It is assumed that the wall impedance is infinite inside the
waveguide, which corresponds to a sound-hard wall. The WFE
method is based on the dynamic equation of one waveguide seg-
ment, which is expressed as:

v l

vr

� �
¼ Dll Dlr

Drl Drr

� �
pl

pr

� �
ð1Þ

where p and v are respectively the pressures and particles veloci-
ties; D is given by D ¼ �x2M þ K where M and K are respectively
the mass and stiffness matrices of the waveguide segment, and x is
the pulsation. The subscripts l and r refer to as the left and right
edges.

Using the Zhong and Williams theory [22], Eq. (1) may be refor-
mulated in terms of state vectors as:

ur ¼ Sul ð2Þ

where S is a 2N � 2N symplectic matrix verifying:

Jn ¼ StJnS ð3Þ

and Jn ¼ 0 In
�In 0

� �
; ut
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r ¼ ½ðprÞtðvrÞt �. The

matrix S is expressed as [23]:
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Considering the coupling conditions between two successive

waveguide segments k and kþ 1; uðkþ1Þ
l ¼ uðkÞ

r in (2) leads to:

uðkþ1Þ
l ¼ SuðkÞ

l ð5Þ
Using Bloch’s theorem [24], the solutions of (5) can be

expressed as:

uðkþ1Þ
l ¼ luðkÞ

l ð6Þ
These solutions are ðlj;/jÞ and represent the wave modes prop-

agating along the whole waveguide. They are numerically calcu-
lated by means of the following eigenvalue problem:

S/j ¼ lj/j ð7Þ

detðS � lI2nÞ ¼ 0 ð8Þ
For a given mode j, lj ¼ expð�ikjdÞwhere kj is the wavenumber,

while the vector /j represents the wave mode shape. It should be
noted that each eigenvector can be divided in components of pres-
sure and velocity, given /t

j ¼ ½ð/pÞtj ð/vÞ
t
j �. Considering a specific

eigenvalue lj, left multiplying of Eq. (7) by StJn gives:

StJnS/j ¼ ljS
tJn/j ð9Þ

Fig. 1. Illustration of a periodic waveguide.
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