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a b s t r a c t

Many materials used as phononic crystals (PCs) are viscoelastic one. It is believed that viscosity results in
damping to attenuate wave propagation, which may help to tune the defect modes or band gaps of vis-
coelastic phononic crystals. To investigate above phenomenon, firstly, we have extended the application
of boundary element method (BEM) to the study of viscoelastic phononic crystals with and without a
point defect. A new developed BEM within the framework of Bloch theory can easily deal with viscoelas-
tic phononic crystals with arbitrary shapes of the scatterers. Experimental methods have been put for-
ward based on the self-made viscoelastic phononic crystals. Verified by the experimental results,
systematic comprehensive parametric studies on the band structure of viscoelastic phononic crystals
with varying factors (final–initial value ratio, relaxation time, volume fraction of scatterers, shapes of
scatterers) have been discussed by the numerical simulation. To further address the possibility to change
the defect modes, the band structure of viscoelastic phononic crystals with a point defect has been stud-
ied based on the numerical and experimental methods. From present research work, it can be found that
by adjusting the two viscous parameters combined with considering the effect of volume fraction and
shapes, a wider and lower initial forbidden frequency or lower and higher quality factor resonant fre-
quency can be obtained.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The phononic crystal (PC) is a typical periodic structure.
Because of its periodicity, there exist band gaps within which the
propagation of wave will be forbidden. Based on this special char-
acteristic, many applicants can be designed, such as wave filters,
waveguides, noise barriers, and lenses [1–5]. Therefore, the phono-
nic crystal has been extensively investigated recently by experi-
mental, analytical, and numerical methods [6–9].

Among above researches, the host matrix and scatterers are
usually considered as elastic materials. Actually, many materials
used as phononic crystals are viscoelastic one, for example, epoxy,
rubber, silicon rubber, and many other polymer composites.
Besides, most materials behave as elastic bodies at room tempera-
ture. However, at high temperature, they present apparent vis-
coelastic properties [10–12]. Viscoelastic materials possess
viscous and elastic properties simultaneously. In the frequency
domain, the material parameters are complex numbers and
frequency-dependent. In the low frequency ranges, the elastic

moduli are much smaller, while the elastic moduli become larger
in the high frequency ranges. Therefore, it may help to lower the
initial forbidden frequency and widen the band gaps [13,14]. Riese
and Wegdam [15] believed that viscoelasticity would promote the
transverse coupling of neighbouring scatterers, which leads to the
wider absolute acoustic band gaps compared with those without
viscosity. Psarobas [16] investigated the effect of viscoelastic losses
in a high-density rubber–air phononic crystal by the multiple scat-
tering method. In his study, the rubber was modeled as the Kelvin–
Voigt system, and the sharp peaks and dips in the resonant states
of scatterers were washed out because of the viscous properties.
Merheb et al. [17,18] developed the finite difference time domain
method to investigate the rubber/air phononic crystals. They found
out that the viscoelasticity would attenuate transmission over
wider frequency ranges, which results in a lower initial frequency.
Liu et al. [19] used the Kelvin–Voigt model based on the fractional
derivative method to evaluate dispersion and dissipation phe-
nomenon in the viscoelastic phononic crystals. They noticed that
the band gaps are widened and the attenuation is enhanced. Zhao
andWei [20,21] observed the influence of viscosity on band gaps of
1D and 2D phononic crystals by means of plane wave expansion
method. They thought the viscosity causes all wave bands shifting
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toward lower frequencies. However, the shift amplitude is differ-
ent for different wave bands. Hussein and Frazier [22] adopted
the state-space method to analysis the band structure of viscously
damped phononic crystals, they found out that the optical branch
is more sensitive to the stiffness-proportional damping, while the
acoustical branch is more sensitive to the mass-proportional
damping.

Based on the above investigations, it can be concluded that vis-
coelasticity can contribute to widen band gaps and lower the initial
forbidden frequency. Therefore, in this paper, we try to discuss the
practical design of viscoelastic phononic crystals to get a wider
band gap and a lower initial frequency. Besides, to the best of the
authors’ knowledge, defect modes for viscoelastic PCs have not
yet been researched so far. To analyze the defect modes of PCs, a
supercell system has to be established, which results in a large-
size computational consumption. To solve this problem, a new
boundary element method (BEM) considering the viscoelastic
effect is developed to simulate the wave propagation behavior in
the viscoelastic phononic crystals with or without defects. Com-
pared with the conventional numerical method, such as plan wave
expansion method [23], multiple scattering method [24], finite dif-
ference time domain method [25], and wavelet method [26], BEM
has some special advantages. It automatically satisfies radiation
conditions that are inherent to the scattering problems [27,28],
besides, its dimensionality reduction for linear problems offers a
higher efficiency and lower storage. Recently, Li et al. [29–31] gave
a conventional BEM to research the band structures of solid/solid
and solid/liquid phononic crystals. However, in their papers, they
only considered phononic crystals as an elastic body, based on
the ideas they have developed, we try to extend BEM to the study
of viscoelastic phononic crystals.

In this paper, a BEM for 2D viscoelastic phononic crystals is
developed. By means of the Fourier transformation method, the
constitutive relation for an isotropic linear viscoelastic media can
be easily transferred from time-domain to frequency-domain.
Then, eigen equations which can be further adopted to simulate
the viscoelastic phononic crystals are obtained. The three-
parameter model and an 8-element generalized Maxwell solid
model are used to model the viscoelastic behavior of host matrix.
Then, the experimental investigation has been carried out on the
self-made viscoelastic phononic crystals with or without defects.
The effects of final–initial value ratio, relaxation time, volume frac-
tion of scatterers, and shapes of scatterers are discussed. The local-
ization phenomenon for viscoelastic PCs with a point defect is also
researched. Results show that viscoelasticity not only can attenu-
ate transmission over wider range, but also can tune the defect
mode. Furthermore, viscous parameters (final–initial value ratio
and relaxation time) are two major factors affect the band gaps,
and combined with other two parameters (volume fraction and
shape of the scatterer), a wider and lower initial forbidden fre-
quency or lower and higher quality factor resonant frequency
can be obtained.

2. Methods and models

2.1. Boundary element method for 2D viscoelastic problems

Suppose the periodic array of homogeneous and isotropic elas-
tic scatterers are embedded in the linear viscoelastic host materi-
als, see Fig. 1.

For an isotropic linear viscoelastic media, the constitutive rela-
tion can be given as [32]

rijðx; y; tÞ ¼
Z t

�1
Gijklðt � sÞdeklðx; y; tÞ

ds
ds ð1Þ

where rij and eij are the stress tensors and the strain tensors, respec-
tively. Gijkl is the relaxation function which can be written in terms
of two time-dependent Lame coefficients (kðtÞ and l(t))

GijklðtÞ ¼ kðtÞdijdkl þ lðtÞ dikdjl þ dildjk
� � ð2Þ

where dij is the Kronecker delta. Substituting Eq. (2) into Eq. (1), the
following relationships can be obtained:

rijðx; tÞ ¼
Z t

�1
kðt � sÞdekkðx; tÞ

ds
dijdsþ

Z t

�1
2lðt � sÞ

� deijðx; tÞ
ds

dijds ð3Þ

For the harmonic wave motion, the strain and stress can be
written in a harmonic function of time, i.e.,

eijðx; sÞ ¼ eijðxÞeixs; rijðx; sÞ ¼ rijðxÞeixs ð4Þ

deijðx; sÞ
ds

¼ ixeijðxÞeixs

where x is the circular frequency. Therefore, based on all above
equations, Eq. (3) can be finally written as

rijðxÞ ¼ ix
Z 1

�1
kðnÞe�ixndn

� �
ekkðxÞdij

þ ix
Z 1

�1
2lðgÞe�ixndn

� �
eijðxÞ ð5Þ

It can be observed that the terms ix
R1
�1 kðnÞe�ixndn and

ix
R1
�1 lðnÞe�ixndn are just the mathematical Fourier transforma-

tion formulations employed to transfer the problem from time-
domain to frequency-domain. Then, if we introduce the
frequency-dependent Lame constants kðxÞ and l(x) into Eq. (5),
almost the same constitutive relation as for linear elastic problems
can be obtained, i.e.,

rijðx;xÞ ¼ kðxÞdijekkðx;xÞdij þ 2lðxÞeijðx;xÞ ð6Þ
The only difference between the elastic and viscoelastic consti-

tutive relation is that kðxÞ and l(x) are complex-valued frequency
dependent functions.

Based on the constitutive relations for linear viscoelastic prob-
lems (see Eq. (6)), the fundamental solutions for 2D anti-plane vis-
coelastic problems are

U3 ¼ 1
2plðxÞK0 i

xr
c2

� �
; P3 ¼ � i

2p
x
c2

@r
@n

K1 i
xr
c2

� �
ð7Þ

where K0(z) and K1(z) are the modified Bessel functions of order 0
and 1, respectively. c2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðxÞ=qp
is the transverse wave speed,

it is also dependent on the frequency; and q is the density,
r = |x � y|, and i ¼

ffiffiffiffiffiffiffi
�1

p
.

Because of the periodicity of the phononic crystals, we only
need to calculate the band gaps among the unit cell, see Fig. 1.
The boundary integral equations corresponding to the anti-plane
time-harmonic problems for matrix and scatterers can be given
respectively as follows:

cklðyÞum
3 ðy;xÞ þ

Z
si

Pm
3 ðx; y;xÞum

3 ðx;xÞdSðxÞ

¼
Z
si

Um
3 ðx; y;xÞpm

3 ðx;xÞdSðxÞ 8y 2 SiðxÞ; i ¼ 1;2;3;4
ð8Þ

cklðyÞus
3ðy;xÞ þ

Z
s0

Ps
3ðx; y;xÞus

3ðx;xÞdSðxÞ

¼
Z
s0

Us
3ðx; y;xÞps

3ðx;xÞdSðxÞ 8y 2 S0ðxÞ
ð9Þ
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