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a b s t r a c t

The concept of variability has been commonly used in practice and it is an important performance index
of manufacturing systems. In this study, the definition of system variability is given through the insight of
Kingman’s approximation. The explicit expression for the variability of a production line is derived based
on intrinsic ratios and contribution factors. With the derived results, properties of variability for a pro-
duction line in terms of job arrival rate, service rate and bounds on variability are examined.
Simulation results are given to validate the derived properties. The result can be used to guide the design
and operations of manufacturing systems.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The concept of variability is often used by practitioners and
researchers to represent the stochastic effect in a manufacturing
system. The common sources of variability in manufacturing sys-
tems are machine breakdowns, setups, reworks, product mixes,
operator availability, batching and fluctuation in process time
and arrival intervals (Hopp & Spearman, 2011; Wu, 2014a,
2014b). Reducing variability decreases job queue time, improves
system service level (Jacobs, Etman, Van Campen, & Rooda,
2003), and is essential in well-known production control tech-
niques, such as just-in-time (JIT) production (Ohno, 1982), theory
of constraints (Goldratt, Cox, & Whitford, 1992) and six sigma
(Barney, 2002). Hence, quantifying variability and understanding
its basic properties play a key role in achieving effective control
of manufacturing systems.

Production managers often want their plants to have higher
throughput rate and shorter cycle time under the same capacity.
An important question often asked by production managers is that
‘‘is our production line more productive than others?” Because it is
almost impossible to find two manufacturing systems with the
same equipment and capacity, this question is not easy to answer
in general. Even if they both have the same type of equipment and
capacity, one can have more throughputs but longer cycle time
than the other. Then which one is more productive in terms meet-
ing production goals? As we will see in Section 3, the key to
answering this question is the variability of manufacturing sys-

tems. When a production line is purely deterministic without
any randomness, the queue time is zero and the manufacturing
system can be operated efficiently in the ideal situation. However,
in the presence of randomness, queue time increases at the same
utilization. To maintain the same queue time, utilization and thus
throughput have to decrease and the return of investment deteri-
orates. Quantifying and reducing system variability becomes an
important theme of manufacturing systems.

In terms of a specific random variable, variability can be simply
regarded as the squared coefficient of variation (SCV) (or some-
times the coefficient of variation). Miltenburg (1987) presents a
method to determine the asymptotic variance of the output per
unit time using the results developed for the asymptotic mean
and variance of the total state residence time in Markov chains.
Gershwin (1993) presented a method to determine the variance
of the output in a given time period from a single station by deriv-
ing the difference equations for the probability of producing n
parts at a given time and then solving these equations by using
some boundary equations. Gershwin also proposed a decomposi-
tion method to determine variance of the output from longer lines.
Kim and Alden (1997) derived an analytical approximation for the
density function and variance of the duration to produce a fixed lot
size on a single workstation with deterministic processing times
and random downtimes. By using a Markov reward model, Tan
(1999) presented a recursive method to determine the mean and
variance of the output from a two-station unstable production line
with a finite buffer in a given time period conditioned on an arbi-
trary initial condition. Based on Markovian arrival process, He, Wu,
and Li (2007) approximated production variability for a production
line with exponential processing times and finite buffers. Both of

http://dx.doi.org/10.1016/j.cie.2016.04.014
0360-8352/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: kan626@gmail.com (K. Wu), zhouyaoming@buaa.edu.cn

(Y. Zhou), zhaoning@kmust.edu.cn (N. Zhao).

Computers & Industrial Engineering xxx (2016) xxx–xxx

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie

Please cite this article in press as: Wu, K., et al. Variability and the fundamental properties of production lines. Computers & Industrial Engineering (2016),
http://dx.doi.org/10.1016/j.cie.2016.04.014

http://dx.doi.org/10.1016/j.cie.2016.04.014
mailto:kan626@gmail.com
mailto:zhouyaoming@buaa.edu.cn
mailto:zhaoning@kmust.edu.cn
http://dx.doi.org/10.1016/j.cie.2016.04.014
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie
http://dx.doi.org/10.1016/j.cie.2016.04.014


the variance of the number of parts produced in a given time per-
iod and the variance of the delivery-time to produce a given num-
ber of products are discussed.

While reducing variability plays a key role in decreasing system
queue time (Delp, Si, & Fowler, 2006), quantifying variability is the
first step toward reducing it. Although variability of a random vari-
able (as discussed above) can be rigorously defined by its mean and
variance, variability of a production line cannot be defined in such
a straightforward manner because: (1) a production line consists of
a series of workstations and its performance (i.e., mean sojourn
time vs. throughput rate) is the gross effect of a series of opera-
tions, and (2) the random variables can be dependent (e.g. the out-
put process), and it is not clear about how to define the variance of
a non-renewal process. Due to the non-renewal arrival processes
among stations, exact analysis for general production line is not
tractable (Berman & Westcott, 1983; Whitt, 1995). On the other
hand, due to the nice property of Brownian motion, higher
moments other than the first two of the service times and interar-
rival times have marginal impact on the mean queue time in heavy
traffic. When a manufacturing system consists of a single machine
with general service times and arrival intervals, the mean queue
time of the system can be approximated using Kingman’s heavy
traffic approximation.
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2
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where QT is the mean queue time of the system, and QTM=M=1 is the
mean queue time of an M/M/1 queue with the same mean arrival
rate and service rate as the single machine, c2a is the squared coeffi-
cient of variation of arrival intervals, c2s is SCV of service times, l is
service rate, ra is the standard deviation of arrival intervals, q is uti-
lization and t is the mean service time. In Eq. (1), the first inequality
is due to Kingman (1962), and the third term to approximate the
queue time is given by Heyman (1975). The service time SCV may
come from the small randomness of service time itself, or from
the preemptive interruptions as explained by Wu (2014a).

Hopp and Spearman (2011) named the three components of the
right-most term in Eq. (1) as VUT, where ‘‘V” refers to variability

(i.e., c
2
aþc2s
2 ), ‘‘U” is utilization (i.e., q

1�q), and ‘‘T” refers to service time

(i.e., t). Hence, system variability (a) of a single machine based on
Kingman’s approximation is defined as

a � c2a þ c2s
2

: ð2Þ

While variability of a random variable is characterized by its
SCV, variability of a single machine system is characterized
through its interarrival time and service time SCV’s. The incentive
is still to capture the randomness inside a system. Based on Eq. (1),
Eq. (2) can be transformed into Eq. (3) as follows (Wu, 2005),

a � QT
QTM=M=1

: ð3Þ

As we will see in Section 3, through the concept of intrinsic
ratios, Eq. (3) can be generalized to capture the variability of a gen-
eral manufacturing system (e.g. a production line) but not limited
to a single machine. Rather than defining variability from the ratio
of mean and variance (for a random variable), system variability in
Eq. (3) is defined based on the ratio of its actual mean queue time
to the mean queue time of its corresponding M=M=1 queueing sys-
tem. Although system variability is defined by the ratio of two
mean queue times, through Eq. (2), one can see that the fundamen-
tals of system variability still connect to the SCV’s of service times
and interarrival times.

Although the definition of system variability in Eq. (3) has been
given by Wu (2005), the model was based on the stochastic inde-

pendence assumption (Kleinrock, 1976) which can give large errors
in practical situations (Whitt, 1985; Wu & McGinnis, 2013). In this
study, we follow the definition of system variability in (Wu, 2005)
and investigate its properties under more general settings. The
results and insights obtained from the model can be used to guide
the activities of managers in manufacturing systems.

This paper is organized as follows. Section 2 reviews intrinsic
ratios and queue time approximations. Section 3 explores the
properties of system variability. Section 4 validates the models
by simulation. Conclusion is given in Section 5.

2. Intrinsic ratio and queue time approximation

To define system variability, we start with production lines con-
sisting of single-server stations as shown in Fig. 1. Assume jobs
arrive at the system independently with rate k. The squared coeffi-
cient of variation (SCV) of arrival intervals is c2a . There are infinite
buffers at each station and the service discipline is first-come
first-served (FCFS). Let Si and c2Si be the mean and SCV of the service
time at station i. Let service rate at station i be li and qi ¼ k=li. For
system stability, assume qi < 1; i ¼ 1; . . . ;N.

Wu and McGinnis (2013) studied a production line with the
structure in Fig. 1 and introduced the concept of intrinsic ratio.
Based on intrinsic ratios, an approximate model for the system
mean queue time of a general queueing network is derived (Wu
&McGinnis, 2012). Here we give a brief review of the intrinsic ratio
and system queue time approximation. It constitutes the funda-
mentals of the analysis in Section 3.

To compute system mean queue time, both main and sub-
bottlenecks of a production line have to be determined first as
follows.

Procedure 1 (Identification of bottlenecks)
1. Identify the index of the system bottleneck server (BN1),

where lBN1
= min li, for i ¼ 1 to N. Let k ¼ 1.

– If more than one server has the minimum service rate,
BN1 = min i, where li ¼ lBN1

.
2. Identify the index of the next bottleneck server (BNk+1) in

front of the previous one (BNk), where lBNkþ1
= min li, for

i ¼ 1 to BNk � 1.
– If more than one server has the minimum service rate,
BNk+1 = min i, where li ¼ lBNkþ1

.

3. If BNk+1 = 1, then go to step 4. Otherwise, let k ¼ kþ 1, go to 2.
4. Stop.

Procedure 1 identifies the main system bottleneck first, and
then, identifies the next bottleneck within a subsystem, where a
subsystem is composed of the servers from the first server to the
newest identified bottleneck (not included). At first when no bottle-
neck has been identified, the subsystem is the entire system and
BN1 is the system bottleneck. The subsystem then gradually
becomes smaller until the subsystem is solely composed of the first
station of the production line.

To compute intrinsic ratios, Wu and McGinnis (2013) intro-
duced ASIA and fully coupled systems. In an ASIA system, all ser-
vers see the initial arrivals (ASIA) directly. Therefore, if the
tandem queue in Fig. 1 is an ASIA system, station i of the tandem

Fig. 1. A production line with N single server stations in series.

2 K. Wu et al. / Computers & Industrial Engineering xxx (2016) xxx–xxx

Please cite this article in press as: Wu, K., et al. Variability and the fundamental properties of production lines. Computers & Industrial Engineering (2016),
http://dx.doi.org/10.1016/j.cie.2016.04.014

http://dx.doi.org/10.1016/j.cie.2016.04.014


Download	English	Version:

https://daneshyari.com/en/article/7541935

Download	Persian	Version:

https://daneshyari.com/article/7541935

Daneshyari.com

https://daneshyari.com/en/article/7541935
https://daneshyari.com/article/7541935
https://daneshyari.com/

