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a b s t r a c t

In this paper, the Acoustic Radiation Modes (ARMs) of spherical structures are studied using the Pressure-
Velocity (PV) method. This method yields the active and reactive modes, which refer to the radiated and
non-radiated sound power components respectively, without restrictions on the observation distance.
The accuracy of the method is verified through the analysis of Near Field ARMs (NFARMs) of a sphere
in spherical coordinates compared to the analytical solution. Differences are analyzed between the
NFARMs and the Far Field ARMs (FFARMs) of a baffled spherical cap, as well as between the active and
reactive parts of the sound power radiated when varying the frequency and the observation distance
to the source. It was found that the radiation efficiency of the active ARMs is independent of the obser-
vation distance, while that of reactive ARMs decreases sharply when retreating from the source.
Experiments were performed using the acoustic reciprocity principle to measure the NFARMs and
FFARMs of a 3D-printed spherical cap radiating in a hemi-anechoic room. Experimental results provided
a reliable validation of the numerical results.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The Active Structural Acoustic Control (ASAC) method, which is
based on Acoustic Radiation Modes (ARMs) theory, is becoming
more and more popular for actively reducing the noise radiated
by large-scale industrial machines, especially in the automotive,
aeronautical and marine sectors. The ARMs theory was developed
as a method for representing the sound power as a linear combina-
tion of independent radiators weighted by the radiation modes’
efficiency, which is known to decrease sharply with the modes’
order. Thus, most of the radiated power is always captured by a
limited number of ARMs which contribute muchmore to the sound
power than other types of modes, regardless of the frequencies
emitted. For the admissible sets of the source basis functions, the
currently used ARMs are the most efficient way to represent the
sound power radiated at a given frequency with good accuracy.
The ARMs can be divided into Far-Field ARMs (FFARMs) and
Near-Field ARMs (NFARMs) based on the observing position. The
ARMs calculated based on the acoustic far-field definition are
named as Far-Field ARMs, whereas those obtained in the near-
field are named as Near-Field ARMs. The active and reactive ARMs

represent the active and reactive component of FFARMs or
NFARMs respectively.

The ARMs theory was first proposed by Borgiotti et al. [1–3] in
1990. It involved the application of Singular Value Decomposition
to an acoustic impedance matrix in the far field in order to calcu-
late the ARMs of the elementary radiators (beam, panel, and
sphere). As the sound power radiated was assumed to be a quadra-
tic function of the sound pressure in the far field, this approach
came to be known as the Pressure-based (PB) method and the
ARMs obtained are seen as the FFARMs. It was later discovered that
a few of the most efficient ARMs contribute a large amount of
sound power in the far field and correspond to supersonic surface
wave-numbers, when analyzed in the context of the wave-number
space Fourier analysis [4], while the number of their dimensions
are considered as the Degrees of Freedom of the vibrating struc-
tures [3]. However, the far-field conditions were difficult to achieve
in experiments. Later, the Elemental Surface (ES) method was pro-
posed, which used the eigenstates of the surface acoustic resis-
tance based on the reasoning that the surface resistance matrix
is real, positive and symmetric [5]. Elliott and Johnson [6] obtained
the modal acoustic radiation solutions either in terms of structural
modes or through elemental surface ARMs calculated via the ES
method. The radiation efficiency of the ARMs has been proved to
be distinctly independent from each other, unlike those of the
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structural modes, which are cross-coupled through acoustic load-
ing. Cunefare et al. [7–9] adapted the Ritz expansion to express
the far-field’s sound power as a quadratic form of the amplitude
vector of the surface velocity with inter-modal coupling coeffi-
cients between the structural modes. Eigen solutions of the cou-
pling matrix lead to the radiation modes and the corresponding
radiation efficiencies coincided well with those obtained from
the ES method. Chen and Ginsberg [10] extended the ES method
to obtain the complex sound power by applying eigenvalue analy-
ses on the real and imaginary parts of the radiation operator,
resulting in radiation efficiency expressions that were proportional
to the radiated and reactive power components, respectively.

All the methods mentioned above can be reduced to two con-
cepts, diagonalizing the sound power matrix in the far field or on
the source surface, using either of two approaches: the SVD of
the source-field transfer matrices and the eigen solutions of the
resistance matrix defined on the radiator. Later, Schevin et al.
[11,12] determined the Near-Field ARMS (NFARMs) by applying
SVD to a defined full radiation matrix representing the transfer
of the sound pressure and the particle velocity from the source
normal velocity; this formed the basis of the Pressure-Velocity
method. It has been shown that the ARMs’ radiation efficiency
increases sharply when approaching the source’s near-field zone,
while the differences in radiation efficiency between effective
and non-effective modes are reduced. These results explained the
complexity of sound power in the near field, but did not distin-
guish the radiated and non-radiated evanescent sound wave’s
independent components. Furthermore, analytical solutions for
the ARMs of radiating baffled beams and plates have been found
by Maury and Elliott in the far-field [13], in terms of Prolate Spher-
oidal Wave Functions (PSWFs), through the solution of an equiva-
lent concentration problem to determine which space-limited
functions have maximal power concentration in the radiation or
supersonic wavenumber domains.

A large portion of the work on ARMs focuses on finite beams
and plates, as sound computations based on the Rayleigh integral
are not applicable to arbitrary structural geometries. Besides pla-
nar structures, the surface ARMs of a sphere radiating in the free
field have been obtained through the ES method, and correspond
to spherical harmonics, which exhibit a grouping phenomenon
[14]. This grouping behavior of the radiation efficiencies was also
found for a rectangular structure radiating in free field under long
wavelength conditions when the structure’s aspect ratio tends to
unity [14]. Pasqual et al. [15,16] studied the ARMs of a spherical
loudspeaker array by dividing the spherical surface into the sym-
metric parts of a dodecahedron, using FFARMs to control the
array’s acoustic directivity. It was found that the FFARMs do not
depend on frequency if the individual radiator has identical
axisymmetric vibration pattern. Peters et al. [17] provided a repre-
sentation of the sound power in terms of fluid-loaded structural
modes and compared it to the ARMs’ decomposition for a sphere
containing an internal structure, as well as a cylindrical radiator.
Recently, a sound power decomposition strategy based on the
FFARMs was introduced, so that the radiator velocity could be
reconstructed by spherical harmonics defined on a mapping
sphere, thus yielding a linear decomposition for the sound pressure
radiated in terms of frequency-independent ARMs [18]. However,
this approach is not suitable when decomposing the complex
sound power in the near field of the radiator, in which case classi-
cal FFARMs are not independent of the surface velocity
distribution.

Since the most efficient radiation modes capture most of radi-
ated sound power, they are useful as cost functions when imple-
menting ASAC strategies, serving as substitutes to structural
modes whose contributions to the sound power are coupled and
which cannot be controlled independently [19–22]. Note that the

number of ARM modes to be controlled defines the number of sen-
sors/actuators and channels theoretically required to achieve the
control. Optimality and independence of the ARMs allows for a sig-
nificant reduction on the number of channels required to obtain a
given decrease in the radiated sound power. As introduced before,
the ARMs are obtained on the radiator surface by the ES method or
in the far field by classical SVD method, and both are accepted to
be the FFARMs. But the widespread application of the ASAC
approach in cabins always works in the acoustic near-field of the
radiating/transmitting structure, where the FFARMs are not effec-
tive, especially in the cases of large dimension structures that exhi-
bit strong near-field effects at low frequency. Thus an improved
method based on the classical methods is proposed by authors to
calculate the NFARMs, named the Pressure-Velocity (PV) method
[23,24]. When applying decomposition strategy for the complex
sound power analysis, the active ARMs represent the active sound
power radiated into the far field while the reactive ARMs represent
the non-radiated part of the complex sound power, which is the
work done by the structure vibrations against the surrounding
fluid.

In this paper, the derivation and discussion of the PV method in
spherical coordinates is introduced in Section 2, while numerical
calculations for the ARMs of a sphere and a baffled spherical cap
are presented in Section 3. The experimental ARMs of a baffled
spherical cap are measured through a novel reciprocity method
in a hemi-anechoic room: this experiment is presented in
Section 4.

2. The Pressure-Velocity method

The sound pressure radiated by a baffled pulsating source
located on a sphere in the free field is expressed by the Rayleigh
integral in spherical coordinates [25], as follows:
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where q0 is the density of fluid, c is sound velocity, k is wave num-
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the spherical Hankel functions of order n and its derivative, vn is the
outward normal velocity of the vibrating source R and
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with n ¼ 0;1; . . . ;1 and m ¼ �n; . . . ;�1;0;1; . . . ;n. Pm
n is the associ-

ated Legendre function of degree n and order m, and Ym
n ðh;/Þ� is the

conjugate of Ym
n ðh;/Þ. It is noted that the Rayleigh integral of Eq. (1)

is used under the assumption of free-field conditions around the
radiating source, and it is a commonly adopted formulation for cal-
culating the sound power radiated by an arbitrary vibrating surface
on a sphere.

By discretizing Eq. (1), the sound pressure radiated over an
observation surface can be written as a modified acoustic impe-
dance matrix multiplied by a volumetric velocity vector. This vec-
tor encapsulates the discretized normal velocity distribution over
the source surface:

p ¼ jq0xGNðr; r0ÞDSRvn ¼ bZv̂ ð3Þ
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