
A local search genetic algorithm for the job shop scheduling problem
with intelligent agents q

Leila Asadzadeh ⇑
Department of Computer Engineering and Information Technology, Payame Noor University, Iran

a r t i c l e i n f o

Article history:
Received 15 March 2013
Received in revised form 24 September 2013
Accepted 6 April 2015
Available online 11 April 2015

Keywords:
Job shop scheduling problem
Genetic algorithms
Local search
Intelligent agents
Multi agent systems

a b s t r a c t

The job shop scheduling problem is one of the most important and complicated problems in machine
scheduling and is considered to be a member of a large class of intractable numerical problems known
as NP-hard. Genetic algorithms have been implemented successfully in many scheduling problems, in
particular job shop scheduling. Hybridization is an effective way of improving the performance and effec-
tiveness of genetic algorithms. Local search techniques are the most common form of hybridization that
can be used to enhance the performance of these algorithms. Agent-based systems technology has gen-
erated lots of excitement in recent years because of its promise as a new paradigm for conceptualizing,
designing, and implementing software systems. This paper presents an agent-based local search genetic
algorithm for solving the job shop scheduling problem. A multi agent system containing various agents
each with special behaviors is developed to implement the local search genetic algorithm. Benchmark
instances are used to investigate the performance of the proposed approach. The results show that the
proposed agent-based local search genetic algorithm improves the efficiency.

� 2015 Published by Elsevier Ltd.

1. Introduction

Job shop scheduling problem (JSSP) is one of the most impor-
tant problems in machine scheduling. Due to factorial explosion
of possible solutions, job shop scheduling problems are considered
to be a member of a large class of intractable numerical problems
known as NP-hard (Jain & Meeran, 1999).

Historically JSSP has been primarily treated using the branch
and bound (Carlier & Pinson, 1989), heuristic rules (Kannan &
Ghosh, 1993) and shifting bottleneck procedure (Adams, Balas, &
Zawack, 1988).

In recent years, meta-heuristic approaches such as taboo search
(TS) (Nowicki & Smutnicki, 1996), simulated annealing (SA)
(Laarhoven, Aarts, & Lenstra, 1992), genetic algorithm (GA)
(Goncalves, Mendes, & Resende, 2005; Wang & Zheng, 2001,
2002), neural networks (NN) (Foo, Takefuji, & Szu, 1995), ant col-
ony optimization (ACO) (Huang & Liao, 2008), particle swarm opti-
mization (PSO) (Ge, Du, & Qian, 2007), artificial bee colony
algorithm (ABC) (Banharnsakun, Sirinaovakul, & Achalakul, 2012)

and bee colony optimization (BCO) (Chong & Low, 2006) are widely
applied to solve this problem.

Genetic algorithms have been implemented successfully in
many scheduling problems, in particular job shop scheduling. For
more complicated problems a genetic algorithm needs to couple
with problem-specific methods in order to make the approach
really effective. Traditional heuristic methods are incorporated to
enhance the performance of genetic search. Ombuki and
Ventresca (2004) proposed a local search genetic algorithm that
uses an efficient solution representation strategy in which both
checking of the constraints and repair mechanism can be avoided.
In their approach, at local search phase a new mutation-like oper-
ator is used to improve the solution quality. Lin, Goodman, and
Punch (1995) introduced a hybrid model consisting of coarse-grain
genetic algorithms connected in a fine-grain style topology. Their
method can avoid premature convergence, and it produced excel-
lent results on standard benchmark job shop scheduling problems.
Wang and Zheng (2001) by combining simulated annealing and
genetic algorithms developed a general, parallel and easily imple-
mented hybrid optimization framework, and applied it to job shop
scheduling problem. Based on effective encoding scheme and some
specific optimization operators, some benchmark job shop
scheduling problems are well solved by the hybrid optimization
strategy. Watanabe, Ida, and Gen (2005) introduced a genetic
algorithm with a modified crossover operator and a search area

http://dx.doi.org/10.1016/j.cie.2015.04.006
0360-8352/� 2015 Published by Elsevier Ltd.

q This manuscript was processed by Area Editor Subhash C. Sarin.
⇑ Tel.: +98 9143633494; fax: +98 4434242899.

E-mail address: leila_asadzadeh_cs@yahoo.com

Computers & Industrial Engineering 85 (2015) 376–383

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2015.04.006&domain=pdf
http://dx.doi.org/10.1016/j.cie.2015.04.006
mailto:leila_asadzadeh_cs@yahoo.com
http://dx.doi.org/10.1016/j.cie.2015.04.006
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie


adaptation method for controlling the tradeoff balance between
global and local searches. Asadzadeh and Zamanifar (2010)
proposed an agent-based parallel genetic algorithm approach.
This parallel approach is based on a coarse-grained model. The
initial population is divided into sub-populations, and each
sub-population is evolved separately. Communication between
sub-populations is restricted to the migration of chromosomes.
Qing-dao-er-ji and Wang (2012) proposed a new hybrid genetic
algorithm for job shop scheduling problem. In their paper, some
genetic operators were designed. In order to increase the diversity
of the population, a mixed selection operator based on the fitness
value and the concentration value was given and a local search
operator was designed, which can improve the local search ability
of genetic algorithm greatly. Yusof, Khalid, Hui, Yusof, and Othman
(2011) solved the job shop scheduling problem by using a hybrid
parallel micro genetic algorithm. A new hybrid parallel genetic
algorithm (PGA) based on a combination of asynchronous colony
genetic algorithm (ACGA) and autonomous immigration genetic
algorithm (AIGA) is employed to solve benchmark job shop
scheduling problem.

In this paper, an agent-based local search genetic algorithm is
proposed for solving the job shop scheduling problem. A multi
agent system containing various agents each with special behav-
iors is developed to implement the local search genetic algorithm.
In this approach, two local search procedures are applied to
enhance the efficiency of the genetic algorithm.

The reminder of this paper is organized as follow. In Section 2,
we describe the job shop scheduling problem. In Section 3, our pro-
posed agent-based local search genetic algorithm is presented.
Results and discussion are described in Section 4. Our conclusion
is given in Section 5.

2. Job shop scheduling problem

Job shop scheduling problem can be described as a set of n jobs
Ji where i = 1,2, . . .,n which have to be processed on a set of m
machines Mk where k = 1,2, . . .,m. Each job consists of a chain of
operations, each of which needs to be processed during an uninter-
rupted time period of a given length on a given machine. Operation
of ith job on the kth machine will be denoted by Oik. There are sev-
eral constraints on jobs and machines:

� A job does not visit the same machine twice.
� There are no precedence constraints among the operations of

different jobs.
� Each machine can process only one job at a time.
� Each job can be processed by only one machine at a time
� Neither release times nor due dates are specified.

Usually we denote the general job shop scheduling problem as
n �m, where n is the number of jobs and m is the number of
machines. The duration in which all operations for all jobs are com-
pleted is referred to as the makespan. A schedule determines the
execution sequence of all operations for all jobs on machines.
The objective is to minimize the makespan value. An example of
a 4 � 4 JSSP is presented in Table 1.

3. Local search genetic algorithm for JSSP with intelligent
agents

Genetic algorithms have been implemented successfully in
many combinatorial problems. For more complicated problems a
genetic algorithm needs to be integrated with problem-specific
methods in order to make the approach really effective.
Hybridization can be an extremely effective way of improving
the performance and effectiveness of genetic algorithms. The most
common form of hybridization is to couple genetic algorithms with
local search techniques and to incorporate domain-specific knowl-
edge into the search process. A common form of hybridization is to
incorporate a local search operator into the genetic algorithm by
applying the operator to each member of the population after each
generation. This hybridization is often carried out in order to pro-
duce stronger results than the individual approaches can achieve
on their own (Sastry, Goldberg, & Kendall, 2005).

Agent-based systems technology has generated lots of excite-
ment in recent years because of its promise as a new paradigm
for conceptualizing, designing, and implementing software sys-
tems. A software agent is a computer system situated in an envi-
ronment that acts on behalf of its user and is characterized by a
number of properties. A multi agent system is one composed of
multiple interacting software agents, which are typically capable
of cooperating to solve problems.

In this paper, we propose a hybrid genetic algorithm that com-
bines local search heuristics with crossover operators. To imple-
ment our local search genetic algorithm, a multi agent system
containing some intelligent agents is developed. Agents of multi
agent system have special actions that are used to implement the
genetic algorithm and local search procedures.

In this section the proposed agent-based model for JSSP is intro-
duced and its structure and details are described. The architecture
of agent-based model and behavior of agents are introduced in
Section 3.1. In Section 3.2, local search procedures are explained.
Genetic operators are described in Section 3.3.

3.1. Architecture of agent-based model

The architecture of proposed agent-based model for JSSP is
shown in Fig. 1. To implement the agent-based model, we used
JADE (Bellifemine, Poggi, & Rimassa, 2001) as a platform and built
our agents on it. The model contains various agents that communi-
cate over the context that provided by JADE middleware. JADE is
compliant with FIPA standard specifications so that agents devel-
oped on it can thus interoperate with other agents built with the
same standard. JADE allows each agent to dynamically discover
other agents and to communicate with them in a peer-to-peer
manner.

Each running instance of the JADE runtime environment is
called a container as it can contain several agents. The set of
active containers is called a platform. A single special main con-
tainer must always be active in a platform and all other contain-
ers register with it as soon as they start. Once the platform is
activated, the JADE default agents in the main container, includ-
ing AMS (Agent Management System), DF (Directory Facilitator),
and RMA (Remote Monitoring Agent) are instantiated. The AMS
agent exerts supervisory control over access to and use of the
agent platform; the DF agent provides the default yellow page
service in the platform; and the RMA allows controlling the life
cycle of the agent platform and of all the registered agents. We
have two containers in our platform that agents are executed
on them: Main-container and Container-1. Each agent of the pro-
posed model has been developed for a special purpose. The
agents can be described as follows.

Table 1
An example of a 4 � 4 JSSP.

Job Machine, processing time

J1 1,3 2,3 3,3 4,2
J2 1,2 4,5 2,4 3,3
J3 2,3 1,2 4,4 3,1
J4 4,3 2,8 1,5 3,4

L. Asadzadeh / Computers & Industrial Engineering 85 (2015) 376–383 377



Download English Version:

https://daneshyari.com/en/article/7542203

Download Persian Version:

https://daneshyari.com/article/7542203

Daneshyari.com

https://daneshyari.com/en/article/7542203
https://daneshyari.com/article/7542203
https://daneshyari.com

