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a b s t r a c t

The inverse Gaussian distribution has considerable applications in describing product life, employee
service times, and so on. In this paper, the average run length (ARL) unbiased control charts, which mon-
itor the shape and location parameters of the inverse Gaussian distribution respectively, are proposed
when the in-control parameters are known. The effects of parameter estimation on the performance of
the proposed control charts are also studied. An ARL-unbiased control chart for the shape parameter with
the desired ARL0, which takes the variability of the parameter estimate into account, is further developed.
The performance of the proposed control charts is investigated in terms of the ARL and standard devia-
tion of the run length. Finally, an example is used to illustrate the proposed control charts.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The control charts are used to monitor and detect the shifts in
the process mean and variance of a quality characteristic of inter-
est in a process. The usual Shewhart X and R control charts are
based on the assumption that the distribution of the observed data
is normal. However, there are many cases in which the normality
assumption is not valid (Chan & Cui, 2003; Haridy & Ei-
Shabrawy, 1996; Roes & Does, 1995). When the underlying distri-
bution is skewed, there are potential problems, namely, the false
alarm rates and detection power of an out-of-control condition
often substantially differ from what we expect under the normal
case (Mahoney, 1998; Tadikamalla, Banciu, & Popescu, 2008).
One method used to compute control limits for skewed distribu-
tions is to first transform the data to make it quasi-normal and
then use the traditional Shewhart control charts (Kao, 2010; Liu,
Xie, Goh, & Chan, 2007; Tadikamalla & Popescu, 2007; Xie, Goh,
& Tang, 2000). But it is not frequently used because it is difficult
to explain the alarm intuitively. Moreover, when the form of the
process distribution is known, one may use the exact method,
not an approximate method, because the accurate control limits
are more likely to detect whether a process is in control (Chan &
Cui, 2003; Tadikamalla & Popescu, 2007). Meanwhile, numerous
papers show that the performances of the control charts with
asymmetric control limits are better than those with symmetric
control limits when the underlying distribution is heavily skewed.
For some other related discussion, see, e.g., Tagaras (1989);

Quesenberry (1991); Quesenberry, 1995, Woodall (1997); Yazici
and Kan (2009) and Chen and Kuo (2010).

The inverse Gaussian distribution is one of the most important
skewed distributions because it is highly flexible and there are a
few major advantages relative to the other positive skewed distri-
butions (Chhikara & Folks, 1989; Hawkins & Olwell, 1997; Tian &
Wilding, 2005; Wu & Li, 2012). Hawkins and Olwell (1997) further
gave some motivations to design the control charts to monitor the
changes in the parameters of the inverse Gaussian distribution. In
the previous studies of the control charts for the inverse Gaussian
distribution, Edgeman (1989a, 1989b) constructed the Shewhart-
type control charts with the probability limits for detecting the
changes in the mean and variability of the inverse Gaussian
distribution. Aminzadeh (1993) proposed the control charts with
the probability limits for monitoring the mean and dispersion of
the inverse Gaussian distribution based on the approximate
distribution of the monitoring statistics using the exponential
smoothing technique. Based on the sequential probability ratio
tests and cumulative sum plans, Edgeman (1996) considered the
control chart to monitor the shifts in the location parameter
assuming that the shape parameter of the inverse Gaussian distri-
bution is known. Shankar and Joseph (1996) proposed a cumula-
tive sum chart to monitor the mean of the inverse Gaussian
distribution assuming that the shape parameter is known.
Hawkins and Olwell (1997) developed a CUSUM control chart for
the location parameter with the assumption of the fixed shape
parameter, and proposed another CUSUM control chart for the
shape parameter assuming that the location parameter is fixed.
Sim (2003) developed the control chart with the probability limits
for the variability under the assumption that the shape parameter
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is known, namely, the control chart is for the location parameter.
Lio and Park (2010) proposed the parametric bootstrap control
charts for monitoring the percentiles of the inverse Gaussian
distribution.

For the skewed distributions, the mean and variance may be
ineffective summary statistics of the process measure (Hawkins
& Olwell, 1997), thus we propose the control chart for the shape
parameter and the control chart for the location parameter when
the shape parameter is in control. Moreover, the Shewhart-type
control charts mentioned above are average run length (ARL)
biased (For a control chart, if the ARLs under the out-of-control
processes are uniformly smaller than that under the in-control pro-
cess, it is called an ARL-unbiased control chart), which is common
for data that follow the skewed distributions (Cheng & Chen, 2011;
Guo & Wang, 2014; Zhang, Xie, & Goh, 2006). The ARL-biased prob-
lem is highly undesirable in practice, since it takes a longer time on
average to signal the assignable causes than that when there is no
assignable cause. This paper thus focuses on the design of the ARL-
unbiased control charts.

This paper is organized as follows. In Section 2, we propose two
statistics to monitor the shape and location parameters, respec-
tively. In Section 3, we develop the procedures to design the
ARL-unbiased control charts for the shape and location parameters,
respectively. In Section 4, we study the effects of parameter esti-
mation on those control charts given in Section 3. In Section 5,
we propose a procedure to design the ARL-unbiased control chart
with the desired ARL0 for the shape parameter when the in-control
shape parameter is estimated, and study the performance of the
proposed control chart. Finally, we use an example to illustrate
the proposed control charts.

2. Monitoring statistics

The probability density function (p.d.f.) of the inverse Gaussian
distribution IGðl; kÞ is given by

f ðx;l; kÞ ¼ k
2px3
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where k > 0 is the shape parameter and l > 0 is the location
parameter. Its mean and variance are l and l3=k, respectively,

therefore the coefficient of variation is CV ¼ ðl=kÞ1=2. The density
is unimodal with shape depending only on h ¼ k=l ¼ 1=CV2

(Edgeman, 1996).
Suppose that X1;X2; . . . ;Xn is a random sample with size n from

the IGðl; kÞ distribution.
Let
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and T2ðl; kÞ ¼
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where X ¼ 1
n

Pn
i¼1Xi. Then X and

Pn
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i are sufficient statistics for
the parameters ðk;lÞ, and T1ðkÞ; T2ðl; kÞ are independent, and
T1ðkÞ � v2ðn� 1Þ; T2ðl; kÞ � IGð1; nhÞ (Tweedie, 1957).

2.1. A monitoring statistic for k

Let k0 be the in-control value of the shape parameter k, and
k1 ¼ qk0 is the true value of k. If q ¼ 1, the parameter k is in con-
trol, otherwise the parameter k has shifted, namely, the parameter
k has decreased when 0 < q < 1 or increased when q > 1. Notice
that the distribution of the statistic T1ðkÞ does not depend on the
parameters k and l,

T1ðk0Þ ¼ k0

Xn

i¼1

1
Xi
� 1

X

� �

is thus proposed as a monitoring statistic of the parameter k.
Since T1ðk0Þ ¼ T1ðk1Þ=q, the value of the monitoring statistic

T1ðk0Þ becomes smaller on average when k shifts from k0 up to
k1ð> k0Þ, as well as the value of T1ðk0Þ becomes larger on average
when k shifts from k0 down to k1ð< k0Þ. Thus it is reasonable to
monitor the changes in k using T1ðk0Þ.

2.2. A monitoring statistic for l

Since the maximum likelihood estimation of the location
parameter l is X and the sample mean X � IGðl;nkÞ or
X=l � IGð1;nk=lÞ when the sample comes from IGðl; kÞ, similar
to the strategy of studying the R or S chart first before considering
the X chart in the normal case, the location parameter l can be
monitored only when the shape parameter k is in control. In fact,
in some physical applications it is natural to hold k constant
(Tweedie, 1957).

Let l0 be the in-control value of the location parameter l, and
l1 ¼ dl0 is the true value of l. If d ¼ 1, the parameter l is in con-
trol, otherwise the parameter l has shifted, namely, the parameter
l has decreased when 0 < d < 1 or increased when d > 1. Since
T2ðl0; k0Þ ¼ dT2ðl1; k0Þ, the value of T2ðl0; k0Þ becomes larger on
average when the location parameter l shifts from l0 up to
l1ð> l0Þ, as well as the value of T2ðl0; k0Þ becomes smaller on
average when the location parameter l shifts from l0 down to
l1ð< l0Þ. Thus it is suitable for monitoring the changes in l using
T2ðl0; k0Þ ¼ X=l0.

3. Design of the control charts with the known parameters

In this section, we shall study how to design the ARL-unbiased
control charts for k and l based on the monitoring statistics T1ðk0Þ
and T2ðl0; k0Þ when the in-control values k0 and l0 are known.

3.1. Design of control chart for the shape parameter

For a given false alarm rate a, let UCL1 and LCL1 be the upper and
lower control limits of the control chart based on the monitoring
statistic T1ðk0Þ, respectively. Then

PðLCL1 6 T1ðk0Þ 6 UCL1jk ¼ k0Þ ¼ 1� a: ð2Þ

It is clear that there are infinite combinations of ðLCL1;UCL1Þ to
satisfy the Eq. (2). However, most of them are not ARL-unbiased.
That is, a change of the process parameter might lead to an
increased ARL, making it harder to be detected. Thus we need to
look for a combination of ðLCL1;UCL1Þ which can result in an
ARL-unbiased control chart based on the monitoring statistic
T1ðk0Þ. The following theorem provides the procedure to obtain
the control limits of the ARL-unbiased control chart for k.

Theorem 1. For a given false alarm rate a, the upper and lower
control limits of the ARL-unbiased control chart for k, UCL1 and LCL1,
satisfy the following equations

Fv2
n�1
ðUCL1Þ � Fv2

n�1
ðLCL1Þ ¼ 1� a;

fv2
nþ1
ðUCL1Þ ¼ fv2

nþ1
ðLCL1Þ;

(
ð3Þ

where fv2
k
ðxÞ and Fv2

k
ðxÞ are the p.d.f. and the cumulative distribution

function (c.d.f.) of the v2 distribution with k degrees of freedom,
respectively.

Proof. Suppose that k0 and k1 ¼ qk0 are the in-control and true
values of k, respectively. Then the probability that a point falls
within the control limits of the ARL-unbiased control chart is given
by
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