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a b s t r a c t

Pareto front optimization has been commonly used for balancing trade-offs between different estimated
responses. Using maximum likelihood or least squares point estimates or the worst case confidence
bound values of the response surface, it is straightforward to find preferred locations in the input factor
space that simultaneously perform well for the various responses. A new approach is proposed that
directly incorporates model parameter estimation uncertainty into the Pareto front optimization. This
step-by-step approach provides more realistic information about variability in the estimated Pareto front
and how it affects our decisions about the potential best input factor locations. The method is illustrated
with a manufacturing example involving three responses and two input factors.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

When optimizing several estimated responses, the two-stage
Pareto front approach (Lu, Anderson-Cook, & Robinson, 2011) to
identify promising candidate solutions and then select a best
match to user priorities can add structure and rigor to decision-
making. Traditionally, Pareto front (PF) optimization approaches
involving multiple estimated responses have focused on the max-
imum likelihood or least squares point estimates of the response at
a given set of inputs (referred to as the ‘‘mean model’’ throughout
this paper). However, uncertainty in the model parameter esti-
mates can have an impact on which input factor combinations
are identified as best. Since the responses are likely to have differ-
ent natural variability in the operational space, the precision with
which the parameters are estimated differs, making it difficult to
anticipate effects on the Pareto front solutions. Naively treating
the estimated response surfaces as fixed can lead to overconfi-
dence in the conclusions and potentially sub-optimal input factor
level choices which do not perform well when implemented in
practice.

Costa, Espirito Santo, and Oliveira (2011) and Mattson and
Messac (2005) propose visualization approaches to understand
how uncertainty impacts the construction of the PF. Martins and
Lambe (2013) provide a survey of design optimization

architectures, while Yao, Chen, Luo, van Tooren, and Guo (2011)
review strategies for uncertainty-based optimization. Hu and
Youn (2011a, 2011b), Wei, Cui, and Chen (2008) and Chowdhury,
Rao, and Prasad (2009) consider strategies for summarizing the
impacts of uncertainty on complex systems and their reliability.

Chapman, Lu, and Anderson-Cook (2014) propose using the
worst case bounds of prediction intervals as a simple way of incor-
porating uncertainty into the decision-making process. In this
paper, we propose an alternative approach for quantifying and
characterizing the impact of estimation uncertainty on solution
selection. The uncertainty impacts both which solutions are
located on the PF, as well as which solutions are best for the partic-
ular priorities of the study as measured by a desirability function
with user-specified weightings of the different criteria.

To illustrate the proposed methodology, we consider the opti-
mization of a chemical process described in Myers, Montgomery,
and Anderson-Cook (2009), [p. 253] where three responses
(y1 = yield, y2 = viscosity, y3 = number-average molecular weight)
are of interest. Two input variables (time, n1 2 [77 min, 93 min]
and temperature, n2 2 [167 F,183 F]) can be adjusted to influence
the responses. To estimate the relationships between inputs and
responses, a 13-run central composite design (Myers et al., 2009,
p. 297) for a circular coded region with maximum radius of
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was run and data were collected for each response. After fitting
quadratic response surface models and removing non-significant
terms, the estimated mean models for each response are as
follows:
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cy1 ¼ 79:94þ 0:995x1 þ 0:52x2 þ 0:25x1x2 � 1:38x2
1 � 1:00x2

2

cy2 ¼ 70:0� 0:16x1 � 0:95x2 � 1:25x1x2 � 0:69x2
1 � 6:69x2

2

cy3 ¼ 3386:2þ 205:1x1 þ 177:4x2

The goal of the optimization is to simultaneously maximize yield,
y1, and minimize both the molecular weight, y3, and the distance
from the viscosity to a target value of 65, jy2 � 65j. The ideal solu-
tion is a combination of time and temperature that performs well
for all three objectives. Since the three criteria cannot all achieve
their optimum simultaneously, which location is selected depends
on the relative importance that is placed on the different responses’
performance.

Because there are objective and subjective aspects to selecting a
best solution to an optimization problem, the PF approach in Lu
et al. (2011) considers decision-making in distinct stages. Stage 1
is objective, since it removes all poor candidates that are strictly
inferior to others. A solution is inferior if at least one solution exists
that has all criterion values at least as good as the inferior solution
and at least one that is strictly better. Eliminating these inferior
choices is rational and simplifies subsequent steps by removing
non-contenders from further consideration. The PF is comprised
of all non-inferior solutions. Stage 2 is subjective as it considers
how important good performance on the different criteria is to
the decision-maker. It examines solutions on the PF and deter-
mines how well they match the priorities of the study. Clearly
there are different ways to consider the subjective aspect of the
decision-making. Our approach is to quantify the desirability of
different options subject to different priorities, and then provide
methods to explore the robustness of the solutions to changes in
priorities. Graphical summaries of the different alternatives and
how they compare can help guide the selection of which individual
solution best suits the needs of the decision-maker and facilitate dis-
cussion with quantitative measures if several stakeholders have dif-
ferent priorities for the solution. Methods are adapted from Lu and
Anderson-Cook (2012) and Lu, Anderson-Cook, and Robinson (2012).

The process for selecting a best overall solution is further com-
plicated when the estimated responses have associated uncer-
tainty, which suggests a range of plausible values for the model
parameters that are consistent with the data observed. To capture
this uncertainty, we use the estimated models to simulate a large
number of response surfaces all consistent with the observed data.
This collection of alternative solutions becomes the basis for exam-
ining the impact of estimation uncertainty on our conclusions. The
overall goal of the selection process is to highlight a small number
of combinations of input factor levels that give optimal perfor-
mance for the responses of interest, subject to how we have chosen
to prioritize them. To help with the discussion of the subjective
Stage 2 when uncertainty is present, we have broken this stage into
several sub-steps (2a–2c), each with distinct goals and customized
graphical summaries. We now provide an overview of the different
steps in the decision-making process, before illustrating the meth-
ods in detail with the example.

Step 0: Generate Alternate Response Surfaces Consistent with Data:
The goal of this step is to generate a large number of sets of model
parameter values that are consistent with the observed data. These
values can then be used to obtain response surfaces representative
of the plausible relationship between the inputs and the responses.
These response surfaces serve as the basis for our understanding of
the impact of estimation uncertainty. The new response surfaces
each lead to different Pareto fronts, with the points on the front
having different criteria values. Understanding which points are
on the Pareto fronts more frequently and the likely range of criteria
values can inform the decision process.

Step 1: Characterize the Pareto Front (objective): The goal of this
step is to summarize the uncertainty associated with the PFs that
is propagated from the estimation uncertainty in the individual
responses. Using the PFs for each simulated surface, we summarize
the frequency with which input factor combinations appear on the
front. Those combinations which do not appear on the front fre-
quently can be eliminated from further consideration. At the con-
clusion of this step, the decision-maker should see how the PF
changes across the spectrum of anticipated response values as well
as which locations are commonly chosen on the PF.

Step 2a: Identify Promising General Solutions (subjective): The
goal of this step is to gain understanding about which locations
are frequently selected as best for different weight combinations
for the user-specified desirability function and scaling. To
summarize this information, we combine the criteria into a single
measure, identify how frequently different locations are best
across all simulated response PFs and the entire set of weight com-
binations as well as how robust they are to different weightings of
the criteria. Examining trade-offs between the criteria allows the
decision-maker to understand how much compromise is needed
on some of the responses to improve others. At the end of this step,
the decision-makers should have improved understanding of
which regions of the input factor space perform well for different
weighting combinations as well as how frequently locations are
best for some weighting.

Step 2b: Find Promising Solutions for More Focused Priorities (sub-
jective): As the decision-makers narrow their search for a best solu-
tion to match their priorities, this step focuses on how frequently
different solutions are identified as the best choice for a particular
set of weights. Initially, weights for the desirability function can be
partitioned into larger regions, and then subsequently a particular
set of weightings of interest can be explored. For the selected range
of weightings, we examine how frequently different solutions are
selected as best. As different prioritizations of the criteria are con-
sidered, different locations in the input factor space are highlighted
as common choices of best solutions. At the end of this step, the
decision-maker has information about which locations are com-
mon choices for best for the specific priorities of the study.

Step 2c: Make Final Performance-Based Selection (subjective):
Since the optimization of the product or process often necessitates
selecting a single input factor combination from which to operate,
this step guides the users to a final decision. Numerical and graph-
ical summaries allow comparisons between individual solutions
which inform the decision-makers of the relative merits of the
available choices. Once commonly identified best solutions in the
range of interest have been highlighted, evaluating and comparing
their performance to the best available alternative for each weight-
ing combination provides understanding about the merits of a
solution. At the end of this step, the decision-makers should under-
stand what choices are available and how they perform at optimiz-
ing the responses for the weightings of interest.

In the remainder of the paper, we describe the details of Steps 0
through 2c for the chemical process example. We illustrate how
the numerical and graphical summaries in each of the steps can
be used to identify promising candidates and eliminate non-con-
tenders until a final solution is selected. The descriptive summaries
also provide a quantitative means of justifying the choice. In Sec-
tion 2, the simulation step is described. Section 3 discusses the
objective Step 1 for characterizing the PF. Sections 4–6 describe
the decision-making process of Steps 2a–2c that incorporates the
user-specified desirability function for combining the measures
and the priorities of the study as summarized by the weighing
combinations of interest. Section 7 provides some discussion of
extensions to the methods, while conclusions are given in
Section 8.
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