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a b s t r a c t

The paper considers a three-machine shop scheduling problem to minimize the makespan, in which the
route of a job should be feasible with respect to a machine precedence digraph with three nodes and one
arc. For this NP-hard problem that is related to the classical flow shop and open shop models, we present
a simple 1.5-approximation algorithm and an improved 1.4-approximation algorithm.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In multi-stage scheduling problems, we are given a set
N ¼ f1;2; . . . ;ng of jobs that have to be processed in a shop consist-
ing of m machines M1;M2; . . . ;Mm. Processing each job involves
several operations, and each operation has to be performed on a
specific machine. The processing times of all operations are given.
The orders of operations of individual jobs are defined by the pro-
cessing routes. The classical scheduling models classified according
to a type of processing route are as follows:

flow shop: All jobs have the same route, usually given by the
sequence ðM1;M2; . . . ;MmÞ.
job shop: The jobs are in advance given different routes defined
by arbitrary sequences of machines; some machines are
allowed to be missing in a route, some are allowed to be visited
more than once.
open shop: The routes are not fixed and the operations of a job
can be performed in an arbitrary order, different jobs being
allowed to obtain different routes.

See books Brucker (2007), Leung (2004), and Pinedo (2012) and
surveys Chen, Potts, and Woeginger (1998) and Lawler, Lenstra,

Rinnooy Kan, and Shmoys (1993) for the review of major results
on classical shop scheduling.

There are several types of enhanced shop models. One type of
such an enhancement allows jobs with both fixed and non-fixed
routes. In a mixed shop, some jobs are processed according to the
same processing route (as in a flow shop) and the other jobs for
which the routes are not fixed (as in an open shop). A more general
model, sometimes called the super shop, can be seen as a job shop
with some extra jobs which are processed as in an open shop. See
Masuda, Ishii, and Nishida (1985) and Strusevich (1991) for studies
on mixed shop and super shop problems.

Another type of enhancement allows the processing routes to
be given by partially ordered sequences of the machines. The clas-
sical models correspond to two extreme types of order: the linear
order for the flow shop and job shop, and no order for the open
shop. For the machine-enhanced shop scheduling models, each
job should be assigned a route that is feasible with respect to given
partial order. Such an order is usually represented by a directed
machine precedence graph, in which the set of vertices coincides
with the set of machines, and the arc goes from vertex Mp to vertex
Mq if and only if in any feasible schedule the job has to be first pro-
cessed on machine Mp and then on machine Mq. Such a graph must
be acyclic, and all transitive arcs can be removed from it without
any loss of information. Since for the described model the routes
are given in the form of directed acyclic graphs (d.a.g.), some
authors call this model the dag shop.

In this paper, we mainly deal with a three-machine shop mod-
els, and call the machines A;B and C. The model of our primary con-
cern is one of the simplest three-machine dag shop models, which
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bears some features of the flow shop and the open shop. The only
restriction on the processing routes is that each job must visit
machine B before machine C, different jobs being allowed to be
assigned different feasible routes. Thus, for all jobs the routes are
given by the same dag that contains exactly one arc going from
vertex B to vertex C. We call this model the combo1 shop, as
opposed to the combo2 shop, for which the routes are given by
the same dag, that contains exactly two arcs going from vertex A.
Fig. 1 shows the machine precedence graphs for the all three-
machine models in which for all jobs the processing routes are
defined by the same dag.

Given a feasible schedule S which satisfies all processing
requirements of the chosen scheduling system, let CmaxðSÞ denote
the makespan of schedule S, i.e., the maximum completion time
by which all jobs are completed on all machines. For all scheduling
problems considered in this paper the objective is to minimize the
makespan. The main purpose of this paper is to present an algo-
rithm that for the three-machine combo1 shop problem finds a
schedule with a makespan that is at most 1.4 times the optimal
value.

The remainder of this paper is organized as follows. We start
with a concise survey of complexity and approximability results
for the classical shop scheduling problems, followed by a formal
description of the three-machine combo1 shop problem. Further,
the complexity issue of the combo1 shop problem is resolved. A
7
5-approximation algorithm for the combo1 shop problem, analysis
of its performance and the tightness issues are contained in three
subsequent sections.

2. Shop problems: a review

In this section, we give a concise overview of complexity and
approximability results for the shop scheduling problems to mini-
mize the makespan. We restrict our attention to the models, in
which no machine appears twice in the processing route of any job.

We are given a set N ¼ f1;2; . . . ;ng of jobs to be processed on m
machines M1;M2; . . . ;Mm. Each job j 2 N consists of at most m
operations O1;j;O2;j; . . . ;Om;j. Operation Oi;j is to be processed on
machine Mi, and this takes pi;j time. For job j, the order of opera-
tions is ðO1;j;O2;j; . . . ;Om;jÞ (for the flow shop), or is given by a pre-
defined sequence (for the job shop), or is not fixed in advance (for
the open shop). It is not allowed to process more than one opera-
tion of the same job at a time. Also, a machine processes at most
one operation at a time. The objective is to find a schedule that
minimizes the makespan Cmax.

In this paper, we assume that in the processing of any operation
preemption is not allowed, i.e., once started, every operation is per-
formed to completion without interruption. Following Chen et al.

(1998), we use notation amjop 6 m0jCmax to refer to m-machine
shop scheduling problems to minimize the makespan, where ain
the first field denotes a type of machine environment (a ¼ F for
the flow shop, a ¼ J for the job shop, and a ¼ O for the open shop),
while op 6 m0 reflects a requirement that the number of operations
in a route does not exceed the given value m0 6 m (if it is missing,
there are up to m operations in the processing route of any job).

Problems F2j jCmax and J2jop 6 2jCmax are solvable in Oðn log nÞ
time due to Johnson (1954) and Jackson (1956), respectively. Sev-
eral linear time algorithms are known for problem O2j jCmax, histor-
ically the first belongs to Gonzalez and Sahni (1976). Each of the
two-machine mixed shop and super shop problems admits an
Oðn log nÞ-time algorithm, see Masuda et al. (1985) and
Strusevich (1991), respectively.

Problem Fmj jCmax is NP-hard in the strong sense for m P 3 as
proved by Garey, Johnson, and Sethi (1976). Problem
F3jop 6 2jCmax remains NP-hard in the strong sense, see Neumytov
and Sevastianov (1993), while the complexity status of problem
O3jop 6 2jCmax is still open. Problem O3j jCmax is NP-hard in the
ordinary sense, as proved by Gonzalez and Sahni (1976). It is still
unknown whether problem Omj jCmax with a fixed number of
machines m P 3 is NP-hard in the strong sense. If the number of
machines is variable (part of the input) then the open shop problem
is NP-hard in the strong sense. In fact, for both the flow shop and the
open shop problems with a variable number of machines and integer
processing times, Williamson et al. (1997) show that the decision
problem to verify whether there exists a schedule S with
CmaxðSÞ 6 4 is NP-complete in the strong sense.

Since most of shop scheduling problems with three and more
machines are NP-hard, the design and analysis of approximation
algorithms is an appealing topic of research. Usually the quality
of approximation algorithms is measured by their worst-case per-
formance ratios. An algorithm H that creates a schedule SH is said
to provide a ratio performance guarantee q, if for any instance of
the problem the inequality

CmaxðSHÞ=CmaxðS�Þ 6 q

holds. A performance guarantee is called tight if there exists an
instance of the problem such that either CmaxðSHÞ=CmaxðS�Þ ¼ q or
at least CmaxðSHÞ=CmaxðS�Þ ! q when some of the processing times
approach zero or infinity. A polynomial-time heuristic with a
worst-case performance ratio of q is called a q-approximation algo-
rithm. A polynomial-time approximation scheme (PTAS) is a family
of ð1þ eÞ-approximation algorithms such that their running time is
polynomial for fixed m and fixed positive e.

Recall major results on approximation for relevant scheduling
models with a fixed number of machines. For each of the problems
Omj jCmax and Fmj jCmax there exists a PTAS, see Sevastianov and
Woeginger (1998) and Hall (1998), respectively. Recall that a PTAS
has been offered for the general problem Jmj jCmax with a fixed
number of operations per job Jansen, Solis-Oba, and Sviridenko
(2003); moreover, the algorithm can be extended to handle the
general dag shop problem. These results provide important theo-
retical evidence that for the classical shop problems heuristic
schedules close to the optimum can be found in polynomial time;
in fact, for each model above a PTAS is the best approximability
result that one could hope for. Still, the running time of these algo-
rithms, although polynomial, is not acceptable for practical needs
even for a small number of machines.

If the number of machines m is variable, then there are polyno-
mial-time algorithms with q ¼ 2 for the open shop, see Aksjonov
(1988); with q ¼ dm=2e for the flow shop and with q ¼ m for the
job shop, see Gonzalez and Sahni (1978). For the job shop problem
Jjop 6 m0jCmax with no repeated machines in any processing route
Feige and Scheideler (2002) give a polynomial-time algorithm with
q ¼ Oðm0m logðm0mÞ log logðm0mÞÞ, which improves the result by

Fig. 1. Three machine dags for: (a) open shop, (b) flow shop, (c) combo1 shop, and
(d) combo2 shop.
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