
An exact solution for vehicle routing problems with semi-hard resource
constraints q

Khaled S. Abdallah a,⇑, Jaejin Jang b

a Department of Supply Chain Management, College of International Transport and Logistics, Arab Academy for Science and Technology, Cairo, Egypt
b Industrial & Manufacturing Engineering Department, College of Engineering and Applied Science, University of Wisconsin-Milwaukee, Milwaukee, United States

a r t i c l e i n f o

Article history:
Received 30 November 2013
Received in revised form 4 July 2014
Accepted 15 August 2014
Available online 4 September 2014

Keywords:
VRPTW
Exact solution
Column generation
Semi-hard time windows

a b s t r a c t

This paper presents an exact solution procedure for a vehicle routing problem with semi-hard resource
constraints where each resource requirement can be relaxed to a pre-fixed extent at a predefined cost.
This model is particularly useful for a supply chain coordination when a given number of vehicles cannot
feasibly serve all the customers without relaxing some constraints.

It is different from VRP with soft time windows in that the violation is restricted to a certain upper
bound, the penalty cost is flat, and the number of relaxations allowed has an upper bound.

We develop an exact approach to solve the problem. We use the branch cut and price procedure to
solve the problem modeling the pricing problem as an elementary shortest path problem with semi hard
resource constraints. The modeling of the subproblem provides a tight lower bound to reduce the com-
putation time. We solve this subproblem using a label setting algorithm, in which we form the labels in a
compact way to facilitate incorporation of the resources requirement relaxation information into it,
develop extension rules that generate labels with possible relaxations, and develop dominance criteria
that reduce the computation time. The lower bound is improved by applying the subset-row inequalities.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Scheduling and dispatching of vehicles is one of the main activ-
ities in distribution and dispatching. This logistics problem is get-
ting more important as more customers order remotely. This
paper extends the traditional Vehicle Routing Problem with Time
Windows (VRPTW) by allowing the resource windows to be
semi-hard. A Semi-hard window can be relaxed to a predetermined
extent at a predetermined compensation cost. It is soft in that it
can be relaxed with a compensation cost, and hard in that the
relaxation cannot exceed a certain limit. The compensation cost
is fixed regardless of the extent a window is relaxed within the
semi hard window. This model is useful when a delivery system
cannot meet the customers’ requirements without violating the
original resource windows, and/or when the relaxation of resource
windows can be pre-arranged for a supply chain coordination to
reduce the total delivery and compensation cost.

This paper presents an exact solution of the problem, which is
NP-hard, based on the column generation (CG) method. The CG
method divides the VRP into a simple master problem with a

restricted set of possible routes and a subproblem that keeps updat-
ing that restricted set. The subproblem generates a set of routes,
each of which can be feasibly served by a single vehicle. Then, the
master problem assigns a selected set of routes to vehicles to get
a new solution of the problem dropping the integral constraints.
CG keeps iterating between the master problem and the subprob-
lem until no more routes are generated by the subproblem, or until
meeting certain exit criteria. If the current solution of the iteration
is not feasible to the original problem (i.e., it is not integral), then
the CG method branches on selected criteria. The algorithm keeps
iterating then branching until finding an optimal solution. The
application of the CG method to the VRPTW is tracked back to
Desrosiers, Soumis, and Desrochers (1984). Dumas, Desrosiers,
and Soumis (1991) extend the problem to pickup-and-delivery
with time window. Desrochers, Desrosiers, and Solomon (1992) for-
mulates the master problems of a few variations of the VRPTW as
set covering problems and the subproblems as non-elementary
shortest path problems with resource constraints.

In the CG method, the subproblem is already NP hard, so various
types of relaxations of its constraints are suggested. Kohl, Desrosier,
Madsen, Solomon, and Soumis (1999) relax the subproblem by
allowing routes with no more than k cycles. Feillet, Dejax,
Gendreau, and Gueguen (2004) prevent cyclic paths and solve an
elementary shortest path problem with resource constraints. They
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extend the label setting algorithm of Beasley and Christofides
(1989) by adding a binary vector that tells whether a customer is
reachable from the current customer without violating its time
window and demand requirement. This vector makes the search
process to be active instead of being passive. Chabrier (2005) also
solves the subproblem using the elementary shortest path
formulation finding better lower bounds than those found with
non-elementary paths. Irnich and Villeneuve (2006) solve the sub-
problem using a non-elementary shortest path algorithm with the
elimination of cycles of size 3 or more. Righini and Salani (2006) solve
the subproblem as elementary shortest path problem with resource
constraints by generating search labels in forward and backward
directions. This reduces the number of labels generated when acceler-
ating techniques are used. They later develop a faster algorithm
(Righini & Salani, 2008) by allowing the generation of routes with
cycles for some customers, and then customers frequently included
in the cycles are not allowed to cycle through later iterations.

The CG method can generate many routes at each iteration
without significantly improving the solution; hence it is helpful
to add cuts to the master problem after a column generation iter-
ation ends to improve the lower bound. A cut is an inequality that
is satisfied by all feasible solutions but currently it is not a part of
the current formulation. When a cut is added to the master prob-
lem, it helps in separating some of the non optimal solutions. This
changes CG into branch cut and price. It is helpful to add cuts to
tighten the lower bound of the master problem. Fukasawa et al.
(2006) tighten the master problem by adding several types of
inequalities to the capacitated vehicle routing problem. The sepa-
ration problems are already NP hard, so the time consumed in gen-
erating cuts and the quality improvement of the bound should be
balanced. Jepsen, Petersen, Spoorendonk, and Pisinger (2008) suc-
cessfully apply the subset row inequalities inspired by the clique
inequality and the odd-hole inequality to the VRPTW. Peterson,
Pisinger, and Spoorendonk (2008) apply the Chavatal–Gomory
rank 1 cuts to solve VRPTW to tighten the lower bound of the mas-
ter problem. They reduce the integrity gap at the root node for sev-
eral instances, but the separation problem is more expensive than
the subset row inequalities.

This paper introduces an exact solution procedure for the VRP
with semi-hard resource constraints. The problem is solved using
the branch cut and price algorithm. In Section 2, we formulate
the problem and decompose this formulation into a master prob-
lem and a subproblem as an elementary shortest path problem
with semi-hard resource constraints. In Section 3, we introduce
an algorithm to solve the subproblem. In Section 4, we present
numerical results. Finally, in Section 5 we summarize our findings
and our future research plan.

2. Problem formulation

2.1. Problem description

We consider a problem where commodity needs to be delivered
to customers meeting their resource windows. The windows are
semi-hard as was explained above. There are multiple vehicles
with the same capacity. The travel times and distances between
the customers are known. The consumption of each resource is
known at each customer. A customer can be visited only once.
All the customers’ requirements have to be met possibly after
relaxing some of the resource windows. The objective is to mini-
mize the delivery cost and the compensation cost of the relaxation.

2.2. Window and resource types

This model considers various types of resources and their win-
dows; one of them is the traditional time window. There are two

types of windows. The first type is the fixed type window, where
the amount of consumption of a resource until a certain point can-
not be decreased. This includes time window, arc length window,
and total route length window. The other type is the adjustable
type window, where the amount of consumption of a resource
until a certain point can be decreased. This includes demand win-
dow and the number of long tours window.

A time window of a customer specifies the earliest and latest
times the customer wants the service or delivery to start, and
has the form of [a,b], where a and b are the lower and upper limits
of the window, respectively. If a time window is relaxed by d, it
becomes either [a � d,b] or [a,b + d]. An arc-length window of a
customer specifies the minimum and maximum length of any
one-way travel to a customer. This window is used when there is
a minimum compensation for short trips and/or fixed amount of
overtime compensation for long trips. After relaxation, the window
can be either [a � d,b] or [a,b + d]. A total route-length window spec-
ifies the maximum distance (or time) of an entire route. When the
total route-length is greater than the upper bound, a fixed compen-
sation cost is charged. After relaxation, it becomes [0,b + d].

The above three window types are fixed type because the ser-
vice time at each node (for the time window), the arc length
between nodes (for the arc-length window), and the route length
of a given route (for the route-length window) cannot be decreased
for the scheduling.

The fixed type window can be further classified as cumulative
or non-cumulative windows. Total route-length window and time
window are cumulative type because any change in an arc length
between nodes or in the service time at a node affects the total
length and the total time to reach another node, respectively.
While the arc-length window is the non-cumulative type as an
arc length is not dependent on the length of other arcs.

We assume that all the arcs ending at a specific node have the
same window, hence the arc-length window is given to each
customer.

The lower and upper bounds of the demand window of a node
tell the minimum and maximum amount of commodity a vehicle
carries after serving the node, respectively. A demand window
has a lower limit of zero, and an upper limit of D � d, where D is
the vehicle capacity and d is the demand quantity of the customer.
After relaxation, the demand window becomes [0,D � d + d],
implying the customer is willing to get less than the originally
planned quantity by d. For the number of long tours window, the
arc length can be defined as the travel distance, time, or the num-
ber of customers per route. Its upper limit is the number of long
tours of the assigned vehicle in the same route of the customer.
After relaxation, the window becomes [0,b + d]. The last two win-
dows discussed here are adjustable type because the delivery
quantity and the actual number of long tours can be decreased.
These windows are explained in Table 1.

2.3. Problem formulation

There are K vehicles, each with capacity D, serving a set of n cus-
tomers V0. The depot and V0 form a new set of customers, V, and a
network G = (V,A), where A is the set of arcs connecting customers
with each other and with the depot. Two nodes represent the
depot: node 0 and n + 1. A feasible vehicle route is a path in G that
starts from node 0 and ends at node n + 1 meeting all resource win-
dows. There are L resource window types. Customer i has resource

window, al
i; b

l
i

h i
for resource l, where al

i bl
i

� �
is the lower (upper)

bound of the resource window. Node i has resource consumption
requirement sl

i for resource l. The resources consumption require-
ment are the same for all vehicles.
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