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a b s t r a c t

We introduce the preventive maintenance scheduling problem with interval costs (PMSPIC), which is to
schedule preventive maintenance (PM) of the components of a system over a finite and discretized time
horizon, given a common set-up cost and component costs dependent on the lengths of the maintenance
intervals. We present a 0-1 integer linear programming (0-1 ILP) model for the PMSPIC; the model is
identical to that presented by Joneja (1990) for the joint replenishment problem within inventory man-
agement. We study this model from a polyhedral and exact solutions’ point of view, as opposed to pre-
viously studied heuristics (e.g. Boctor, Laporte, & Renaud, 2004; Federgruen & Tzur, 1994; Levi, Roundy, &
Shmoys, 2006; Joneja, 1990). We show that most of the integrality constraints can be relaxed and that the
linear inequality constraints define facets of the convex hull of the feasible set. We further relate the
PMSPIC to the opportunistic replacement problem, for which detailed polyhedral studies were performed
by Almgren et al. (2012a). The PMSPIC can be used as a building block to model several types of main-
tenance planning problems possessing deterioration costs. By a careful modeling of these costs, a poly-
hedrally sound 0-1 ILP model is used to find optimal solutions to realistic-sized multi-component
maintenance planning problems. The PMSPIC is thus easily extended by side-constraints or to multiple
tiers, which is demonstrated through three applications; these are chosen to span several levels of
unmodeled randomness requiring fundamentally different maintenance policies, which are all handled
by variations of our basic model.

Our first application considers rail grinding. Rail cracks increase with increasing intervals between
grinding occasions, implying that more grinding passes must be performed—thus generating higher costs.
We optimize the grinding schedule for a set of track sections presuming a deterministic model for crack
growth; hence, no corrective maintenance (CM) will occur between the grinding occasions scheduled.
The second application concerns two approaches for scheduling component replacements in aircraft
engines. The first approach is bi-objective, simultaneously minimizing the cost for the scheduled PM
and the probability of unexpected stops. In the second approach the sum of costs for PM and expected
CM—without rescheduling—is minimized. When rescheduling is allowed, the 0-1 ILP model is used as
a policy by re-optimizing the schedule at a component failure, which then constitutes an opportunity
for PM. The policy manages the trade-off between costs for PM and unplanned CM and is evaluated in
a simulation of the engine. The third application considers components’ replacement in wind mills in a
wind farm, extending the PMSPIC to comprise multiple tiers with joint set-up costs. Due to the large
number of components unexpected stops occur frequently, thus calling for a dynamic rescheduling,
which is evaluated through a simulation of the system. In each of the three applications, the use of the
0-1 ILP model is compared with age or constant-interval policies; the maintenance costs are reduced
by up to 16% as compared with the respective best simple policy. The results are strongest for the first
two applications, possessing low levels of unmodeled randomness.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

To ensure that a system stays operational, or to restore a failed
system to an operational state, requires maintenance; different
system states call for different types of maintenance activities.
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Maintenance optimization means deciding which maintenance
activities to perform, and when, such that one or several objectives
are optimized. Maintenance optimization models of systems com-
prising one or several components, and including repairs and
replacements of components, as well as inspections and condition
monitoring, are extensively studied in the literature; see the sur-
veys (Dekker, Wildeman, & van der Duyn Schouten, 1997; Nicolai
& Dekker, 2008; Wang, 2002). Of particular interest to this article
are two types of maintenance activities, often denoted preventive
maintenance (PM)—performed in order to avoid failure—and correc-
tive maintenance (CM)—performed after failure in order to restore
the system into an operational state.

This article considers the scheduling of PM activities for a multi-
component system using a dynamic finite horizon model. That is,
the system to be maintained consists of several components as-
sumed to possess a positive economic dependence such that any
maintenance activity generates common set-up costs shared by
the components. The model is dynamic in order to incorporate
unexpected events, i.e., CM activities. In the sequel, we denote by
maintenance occasion that maintenance occurs for at least one
component in the system. Further, replacement will denote a gen-
eric maintenance activity for a single component, even though in
our case studies a PM action is not always an actual replacement.

A common approach to maintenance scheduling—or mainte-
nance decision making—is to use a simple policy, which often con-
tains a number of parameters whose values are optimized either
numerically or analytically. The following policies are of interest
for the problems studied in this article and will be compared with
the optimization model developed. (i) The constant-interval policy
(CI) (e.g. Tian, Jin, Wu, & Ding, 2011) is to replace all components
after a predefined period (the parameter of the policy). (ii) The
age policy, in which a component is replaced when it reaches a
predefined age or at failure, was originally developed for single-
component systems. For multi-component systems we consider
an age policy with ‘soft’ and ‘hard’ component lives (constituting
the parameters of the policy), as described by Crocker and Kumar
(2000) and summarized as follows: ‘‘A maintenance occasion is
enforced if the age of any component reaches its hard life or if a
component failure occurs. At a maintenance occasion, additionally
failed components and components having surpassed their soft life
are replaced.’’ That is, the ‘hard’ life parameter sets a hard limit on
the interval between replacements of a component in the system;
the ‘soft’ life is the age parameter after which a component is
replaced if the set-up cost has been triggered by some other com-
ponent. (iii) A policy based on target built life (TBL) with hard lives
(the TBL and the hard lives constituting the policy parameters) is
then considered, as described by Crocker and Sheng (2008): ‘‘A
maintenance occasion is enforced if the age of any component
reaches its hard life or if any component fails. Given a maintenance
occasion, components are replaced until the expected number of
component failures before the TBL is reached is below one.’’ Note
that the constant-interval policy corresponds to a fixed schedule,
while the age and TBL policies do not.

The scheduling problem considered in this article is an exten-
sion of the opportunistic replacement problem (ORP) studied by
Almgren et al. (2012a) and described as follows: ‘‘The system con-
sists of a set of components. The time between two consecutive
replacements of a component may not exceed its assigned maxi-
mum replacement interval. To each time point in the planning per-
iod corresponds a fixed maintenance set-up cost and replacement
costs for each component. The problem is to schedule the compo-
nent replacements over a finite set of time points in order to min-
imize the total maintenance cost.’’ Systems consisting of safety
critical components should be maintained according to this princi-
ple. For each component in such a system the maximum replace-
ment interval corresponds to a technical life which is assigned

based on safety criteria. For other types of systems, however, a fail-
ure might be a mere inconvenience. Further, a failure may corre-
spond to a signal from a condition monitoring system indicating
that a threshold value is surpassed, and that a repair or replace-
ment action is necessary for the system to stay in operation. In
Almgren et al. (2012a), a 0-1 integer linear programming (0-1
ILP) model yields significant reductions of the maintenance costs
as compared with simpler policies of the types (i)–(iii). Patriksson,
Strömberg, and Wojciechowski (2014) consider the stochastic ORP,
which extends the ORP to allow for uncertain maximum replace-
ment intervals and—given a failure of one component—to decide
whether additional components should be replaced, by using a
two-stage stochastic programming model. That setting, however,
presumes identical costs for unexpected and scheduled mainte-
nance stops. In this article PM is scheduled, but instead of enforc-
ing a maximum replacement interval, a deterioration cost is
assigned to the length of the time interval between scheduled
PM actions. We will demonstrate by means of case studies that this
provides a rich and promising framework for PM scheduling.

The idea of assigning a deterioration cost to a maintenance
interval is not new. The standard indirect grouping model for PM, re-
viewed by Dekker et al. (1997), is also based on this idea and con-
tains a fixed maintenance occasion cost, a preventive maintenance
cost, and a deterioration cost function for each component. A main-
tenance stop occurs every T time units and component i is replaced
every kiT time units. A closed form expression of the average main-
tenance cost is obtained and values for the parameters T 2 Rþ and
ki 2 N are chosen by numerical optimization. Since the average
cost is minimized, a static infinite horizon model is obtained.

As discussed in Dekker (1995), varying the form of the deterio-
ration cost function yields a large variety of maintenance problems
including optimal block replacement, minimal repair, and standard
inspection, as well as inventory problems, such as the joint replen-
ishment problem (JRP). The JRP has been studied under indirect
grouping strategies as well as over a finite horizon (Khouja &
Goyal, 2008)—then denoted the dynamic JRP (DJRP); it is closely
connected to the preventive maintenance scheduling problem with
interval costs (PMSPIC) considered in this article. Our 0-1 ILP model
was introduced by Joneja (1990) for the DJRP (see Section 2 for an
in-depth discussion).

Grigoriev, Van De Klundert, and Spieksma (2006) consider the
periodic maintenance problem (PMP), which includes deterioration
costs. The PMP is periodic in that, at the end of the time horizon
the maintenance schedule starts over. Since the deterioration cost
is deterministic, no rescheduling is needed and the solution ob-
tained is static. The system consists of a set of machines among
which at most one at a time may be maintained. Hence, the main-
tenance occasions typically are spread out over time in contrast to
the PMSPIC, for which the component replacements typically are
coordinated at fewer time points. Grigoriev et al. also presents a
0-1 ILP model for the PMP, based on a network flow formulation,
which resembles our basic model for the PMSPIC (see Section 2.2).
Since periodicity may simplify the integration of maintenance and
staff planning, periodic maintenance is often desired as output
from maintenance policies; we show in this article how periodicity
can be incorporated in the PMSPIC through side-constraints.

The remainder of this article is organized as follows. In Section 2
we define the PMSPIC, present a 0-1 ILP model based on a multi-
commodity flow formulation, and establish some important prop-
erties of the model. Sections 3–5 present three industrial applica-
tions of the model. Section 3 considers the grinding of railway
tracks, presuming a deterministic model of crack growth. Section 4
considers preventive component replacements in an aircraft en-
gine module using two approaches: (a) the bi-objective minimiza-
tion of the cost for the scheduled PM and the probability of an
unexpected stop and (b) the minimization of the sum of the costs

2 E. Gustavsson et al. / Computers & Industrial Engineering xxx (2014) xxx–xxx

Please cite this article in press as: Gustavsson, E., et al. Preventive maintenance scheduling of multi-component systems with interval costs. Computers &
Industrial Engineering (2014), http://dx.doi.org/10.1016/j.cie.2014.02.009

http://dx.doi.org/10.1016/j.cie.2014.02.009


Download English Version:

https://daneshyari.com/en/article/7542476

Download Persian Version:

https://daneshyari.com/article/7542476

Daneshyari.com

https://daneshyari.com/en/article/7542476
https://daneshyari.com/article/7542476
https://daneshyari.com

