On a class of starlike functions related to a shell-like curve connected with Fibonacci numbers

Jacek Dziok ${ }^{\text {a }}$, Ravinder Krishna Raina ${ }^{\text {b,1 }}$, Janusz Sokół ${ }^{\text {c,* }}$
${ }^{\text {a Department of Mathematics, Institute of Mathematics, University of Rzeszów, ul. Rejtana 16A, 35-310 Rzeszów, Poland }}$
${ }^{\mathrm{b}}$ M.P. University of Agri. and Technology, Udaipur, Rajasthan, India
${ }^{\text {c }}$ Department of Mathematics, Rzeszów University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland

A R TICLE INFO

Article history:

Received 14 November 2011
Received in revised form 14 October 2012
Accepted 15 October 2012

Keywords:

Univalent functions
Convex functions
Starlike functions
Subordination
Fibonacci numbers
Conchoid of de Sluze
Trisectrix of Maclaurin

Abstract

In this paper we investigate an interesting subclass $\mathscr{\&}$ of analytic univalent functions in the open unit disc on the complex plane. This class was introduced by Sokół [J. Sokół, On starlike functions connected with Fibonacci numbers, Folia Scient. Univ. Tech. Resoviensis 175 (1999) 111-116]. The class $\& \mathscr{L}$ is strongly related to the class $\mathcal{K} \& \mathscr{L}$ considered earlier by the authors of the present work in their paper [J. Dziok, R. K. Raina, J. Sokół, Certain results for a class of convex functions related to shell-like curve connected with Fibonacci Numbers, Comput. Math. Appl. 61 (2011) 2606-2613]. Apart from furnishing some genuine remarks, we present certain new results for the class $\& \mathcal{L}$ of functions, and also mention some relevant cases for this function class.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Let \mathcal{A} be the class of all holomorphic functions f in the open unit disc Δ with the normalization $f(0)=0, f^{\prime}(0)=1$, and let δ denote the subset of \mathcal{A} which is composed of univalent functions. We say that f is subordinate to F in Δ, written as $f \prec F$, if and only if $f(z)=F(\omega(z))$ for some holomorphic function ω such that $\omega(0)=0$ and $|\omega(z)|<1$, for all $z \in \Delta$. The class of starlike functions δ^{*} can be defined in various ways, and for example, we say that $f \in \mathscr{A}$ is starlike if it satisfies the condition that

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)} \prec p(z) \quad(z \in \Delta) \tag{1.1}
\end{equation*}
$$

where $p(z)=(1+z) /(1-z)$. Several subclasses of s^{*} have been defined in the literature by choosing appropriately the arbitrary function $p(z)$ in (1.1). We consider it worthwhile here to mention some useful geometric transformations that arise when the function $p(z)$ is chosen suitably. Thus, it is easily observed that when
(i) $p(z)=\frac{1+(1-2 \alpha) z}{1-z}, \alpha<1$, then under this transformation, the image of the unit circle $|z|=1$ is a straight line $\mathfrak{R}(w)=$ α, while the image of the unit disc Δ is the half plane $\mathfrak{R}(w)>\alpha$. In this case, a function $f \in \mathcal{A}$ satisfying (1.1) is called starlike of order α and the family of all such functions is denoted by $8^{*}(\alpha)$.

[^0](ii) $p(z)=\frac{1+A z}{1+B z},-1<B<A \leq 1$, then $p(\Delta)$ is the $\operatorname{disc} \mathbf{D}(C(A, B), R(A, B))$ with the centre $C(A, B)=(1+A B) /\left(1-B^{2}\right)$, and the radius $R(A, B)=(A+B) /\left(1-B^{2}\right)$; see [1,2].
(iii) $p(z)=\left(\frac{1+z}{1-z}\right)^{\beta}, 0<\beta \leq 1$, then $p(\Delta)$ is an angle $\{w \in \mathbf{C}: \operatorname{Arg} w<\beta \pi / 2\}$; see [3]. In this case, a function $f \in \mathcal{A}$ satisfying (1.1), is called strongly starlike of order β.
(iv) $p(z)=1+\frac{2}{\pi^{2}}\left(\log \frac{1+\sqrt{z}}{1-\sqrt{z}}\right)^{2}$, then after some elementary calculations, one can find that $p(\Delta)$ is a parabolic domain $\left\{w=u+i v \in \mathbf{C}: u>\sqrt{(u-1)^{2}+v^{2}}\right\}$. In this case, if a function $f \in \mathcal{A}$ satisfies (1.1), then the function $\int_{0}^{z} \frac{f(t)}{t} \mathrm{~d} t$ is called a uniformly convex function; see [4-6].
(v) $p(z)=\frac{1}{1-\beta^{2}} \cos \left\{\frac{2}{\pi}(\arccos \beta) i \log \frac{1+\sqrt{2}}{1-\sqrt{2}}\right\}-\frac{\beta^{2}}{1-\beta^{2}}, 0<\beta<1$, then $p(\Delta)$ is an interior of hyperbola $\{w=u+i v \in$ $\left.\mathbf{C}: u>\beta \sqrt{(u-1)^{2}+v^{2}}\right\}$; see [7-9].
(vi) $p(z)=1+\frac{2}{k^{2}-1} \sin ^{2}\left(\frac{\pi}{2 \mathcal{K}(t)} \mathcal{F}(\sqrt{z / t}, t)\right), k>1, \mathcal{F}(1, t)=\mathcal{K}(t)$, where
$$
\mathcal{F}(w, t)=\int_{0}^{w} \frac{\mathrm{~d} x}{\sqrt{1-x^{2}} \sqrt{1-t^{2} x^{2}}}
$$
is called the Jacobi elliptic integral, and $t \in(0,1)$ is such that
$$
k=\cosh \frac{\pi \mathcal{K}^{\prime}(t)}{2 \mathcal{K}(t)},
$$
then $p(\Delta)$ is an elliptic domain $\left\{w=u+i v \in \mathbf{C}: u>\beta \sqrt{(u-1)^{2}+v^{2}}\right\}$; see [7-9].
(vii) $p(z)=\sqrt{1+z}$, where the branch of the square root is chosen in order that $\sqrt{1}=1$, then $p(\Delta)$ is an interior of the right loop of the Lemniscate of Bernoulli $\left\{w \in \mathbf{C}: \mathfrak{R}(w)>0,\left|w^{2}-1\right|<1\right\}$; see [10,11].
(viii) $p(z)=\left(\frac{1+z}{1+(1-b) / b z}\right)^{1 / \alpha}, a \geq 1, b \geq 1 / 2$, where the branch of the square root is chosen in order that $p(0)=1$, then $p(\Delta)$ is a leaf-like domain $\left\{w \in \mathbf{C}:\left|w^{\alpha}-b\right|<b, \operatorname{Arg} w \leq \pi /(2 \alpha)\right\}$; see [12].
In cases (i)-(viii), the function p is a convex univalent function. In [13], Ma and Minda proved some general results for functions $f \in \mathcal{A}$ satisfying (1.1), where p is assumed to be univalent, $p(\Delta)$ is assumed to be symmetric with respect to real axis and starlike with respect to $p(0)=1$. The problems in the class defined by (1.1) become much more difficult if the function p is not univalent. We will consider such class of functions in the present work. An interesting case, when the function p is convex but is not univalent, was considered in [14]. It would be very interesting to find what extra information can be attained (or gained) by using the defining condition (1.1), instead of the weaker condition that
\[

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)} \in p(\Delta), \quad \text { for all } z \in \Delta \tag{1.2}
\end{equation*}
$$

\]

given a non-univalent p.

2. Main results

We first recall here the following class of functions introduced in [15], in which the estimates of coefficients and other connected results were investigated. The related classes of functions were also studied in [16,17].

Definition 1. The function $f \in \mathcal{A}$ belongs to the class $\wp \mathscr{L}$, if it satisfies the condition (1.1) with

$$
\begin{equation*}
\widetilde{p}(z)=\frac{1+\tau^{2} z^{2}}{1-\tau z-\tau^{2} z^{2}} \quad(z \in \Delta) \tag{2.1}
\end{equation*}
$$

where $\tau=(1-\sqrt{5}) / 2 \approx-0.618$.
The function (2.1) is not univalent in Δ, but it is univalent in the disc $|z|<(3-\sqrt{5}) / 2 \approx 0.38$. For example, $\widetilde{p}(0)=$ $\widetilde{p}\left(-\frac{1}{2 \tau}\right)=1$ and $\widetilde{p}\left(e^{ \pm i \arccos (1 / 4)}\right)=\frac{\sqrt{5}}{5}$, and it may also be noticed that

$$
\frac{1}{|\tau|}=\frac{|\tau|}{1-|\tau|}
$$

which shows that the number $|\tau|$ divides $[0,1]$ such that it fulfils the golden section of this segment
Let us put $\mathfrak{R}\left[\widetilde{p}\left(e^{i \varphi}\right)\right]=x$ and $\widetilde{\Im}\left[\widetilde{p}\left(e^{i \varphi}\right)\right]=y, \varphi \in[0,2 \pi) \backslash\{\pi\}$; then upon performing simple calculations, we find that

$$
x=\frac{\sqrt{5}}{2(3-2 \cos \varphi)}, \quad y=\frac{\sin \varphi(4 \cos \varphi-1)}{2(3-2 \cos \varphi)(1+\cos \varphi)}, \quad \varphi \in[0,2 \pi) \backslash\{\pi\}
$$

https://daneshyari.com/en/article/7542591

Download Persian Version:

https://daneshyari.com/article/7542591

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: jdziok@univ.rzeszow.pl (J. Dziok), rkraina_7@hotmail.com (R.K. Raina), jsokol@prz.rzeszow.pl, jsokol@prz.edu.pl (J. Sokół).
 1 Present address: 10/11 Ganpati Vihar, Opposite Sector 5, Udaipur 313002, India.

