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1. Introduction

In this paper we study a general maturity-structured population model described by the following equation:

NG m) | HEmNWE M) oyNe, m) + PN(E, m). (1)
ot om

We consider Eq. (1) with the boundary condition

1
g(@N(t,a) = f b*(m)N(t, m) dm (2)

appearing frequently in age-structured models. The variable m, called maturity, describes a state of a cell and is a number
from the interval [a, 1]. We denote by ©(m) the rate of loss of individuals by death and division. The maturity changes
according to the equation

dm

- =8&(m). (3)

In models similar to (1), assumptions that guarantee the boundedness of cell maturity, play an important role. Here we
assume, as in [1], that g(1) = 0. This condition guarantees that the maturity variable cannot exceed 1. Note that models of
cellular replication studied in [2-5] are based on a different biological assumption expressed as f; u(m)dm = oo which
means that the death rate is unbounded at m = 1. An advantage of our approach is that both the birth and death rates can
be bounded.

Structured population models have a long history [6-11]. Generally, one can consider two types of structured models:
with equal [1,3,4,12,13] and unequal fission [ 14-18]. Moreover, there are also a few models of both types of binary fission,
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see e.g. [5]. In a recent paper [2] the authors consider a model with general division processes including age-structured
models. The division operator in our model is the same as in [2]. To keep the paper self contained we recall assumptions
concerning the replication process. We assume that a cell with maturity m produces k individuals and that a transition
probability function £ (m, A) is the probability that any of its descendants has the maturity in the set A, where A € X and
X is the o -algebra of Borel subsets of [a, 1]. A cell with a maturity m has

P(m, A) =Y kb(m) P (m, A) 4)
k=1

descendants with parameters in the set A in a unit of time, where b, (m) denotes the rate at which a cell with maturity m
produces k individuals. By

b(m) = Z kby(m) (5)
k=1

we denote the mean number of its descendants in a unit of time. Let b%(m) = £ (m, {a}) and b"(m) = " (i, [a, 1]), where
P'(m, A) = P(m, A\ {a}). (6)

We assume that for each m the measure £ (m, -) is absolutely continuous with respect to the Lebesgue measure for a.e.
m. Then, by the Radon-Nikodym theorem, there exists a unique operator P defined on the space L![a, 1] such that for each
nonnegative function f € L'[a, 1] and each set A € X we have

1
/Pf(m) dm :/ P"(m, A)f (m) dm. (7)
A a

The main result of this paper (Theorem 1) gives sufficient conditions for solutions of Eq. (1) to have asynchronous
exponential growth (AEG), i.e.

N(@m, t) ~ Ce*v(m) ift — oo, (8)

where v(m) is a stationary maturity profile. The proof of the main result uses techniques of stochastic semigroups [5,19-22]
and it mainly relies on a theorem concerning asymptotic stability of partially integral stochastic semigroups [21]. The AEG
property is usually verified by methods from spectral theory of positive semigroups [23] which are technically difficult. Our
approach does not require the analysis of the whole spectrum of the generator of the semigroup. The novelty of our methods
is the application of Proposition 5 from [21], which states that a partially integral stochastic semigroup is asymptotically
stable iff it has a unique and positive invariant density.

The outline of the paper is as follows. The main result is formulated in Section 2. In Section 3 we show that an operator
which appears in the dual equation has a positive eigenvector. In Section 4 we show that Eq. (1) generates a semigroup
{T(t)}>0 of nonnegative operators and, by making a change of variables, we replace Eq. (1) with another one which generates
a stochastic semigroup {S(t)}:>o.In Section 5 we construct the unique invariant positive density for the stochastic semigroup
{S(t)}t>0. Section 6 contains the proof of the main result. We show that the semigroup {S(t)};>o is asymptotically stable,
which implies that semigroup {T (t)}:>o has asynchronous exponential growth.

2. Formulation of the result

Let N(t, m) be the density of individuals with maturity m at time t. Then fan N(t, m) dm denotes the number of cells at

time t with the parameter m from the interval [m;, m,]. We study Eq. (1) with boundary condition (2) and with the initial
condition

N(0,m) = Ng(m) form € [a, 1]. (9)

We assume that g:[a, 1] — [0, 00) is a continuously differentiable function satisfying g(m) > 0 for m € [a, 1) with
g(1) = 0 and that the functions w, b%, b", b: [a, 1) — [0, co) are bounded, continuous, and measurable. We additionally
assume that the derivatives 1/(1), g’(1) exist with g’(1) < 0 and that for everym € (a, 1)

1
L P(m, [a, m)) dm > 0. (10)

m

One can interpret (10) as follows: for every m € (a, 1) a cell with parameter less than m can be a daughter of a cell with
parameter greater than m. We also assume that a mother cell with parameter m cannot have daughters with parameter
greater than m — h which can be stated as

Pr(m,[a,m—h]) =1 forallm € [a, 1],k > 1. (11)
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