
Mathematical and Computer Modelling 57 (2013) 1240–1249

Contents lists available at SciVerse ScienceDirect

Mathematical and Computer Modelling

journal homepage: www.elsevier.com/locate/mcm

Asymptotic behaviour of a structured population model✩

Katarzyna Pichór
Institute of Mathematics, Silesian University, Bankowa 14, 40-007 Katowice, Poland

a r t i c l e i n f o

Article history:
Received 16 May 2011
Received in revised form 21 September
2012
Accepted 1 October 2012

Keywords:
Structured population
Fragmentation equation
First order partial differential equation
Positive semigroup
Asymptotic stability

a b s t r a c t

We consider a first order partial differential equation with a transformed argument which
describes a model of the maturity-structured cell population. A new criterion for an
asynchronous exponential growth of the solution to such an equation is given.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we study a general maturity-structured population model described by the following equation:

∂N(t,m)

∂t
+

∂(g(m)N(t,m))

∂m
= −µ(m)N(t,m) + PN(t,m). (1)

We consider Eq. (1) with the boundary condition

g(a)N(t, a) =

 1

a
ba(m)N(t,m) dm (2)

appearing frequently in age-structured models. The variable m, called maturity, describes a state of a cell and is a number
from the interval [a, 1]. We denote by µ(m) the rate of loss of individuals by death and division. The maturity changes
according to the equation

dm
dt

= g(m). (3)

In models similar to (1), assumptions that guarantee the boundedness of cell maturity, play an important role. Here we
assume, as in [1], that g(1) = 0. This condition guarantees that the maturity variable cannot exceed 1. Note that models of
cellular replication studied in [2–5] are based on a different biological assumption expressed as

 1
a µ(m) dm = ∞ which

means that the death rate is unbounded at m = 1. An advantage of our approach is that both the birth and death rates can
be bounded.

Structured population models have a long history [6–11]. Generally, one can consider two types of structured models:
with equal [1,3,4,12,13] and unequal fission [14–18]. Moreover, there are also a few models of both types of binary fission,
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see e.g. [5]. In a recent paper [2] the authors consider a model with general division processes including age-structured
models. The division operator in our model is the same as in [2]. To keep the paper self contained we recall assumptions
concerning the replication process. We assume that a cell with maturity m produces k individuals and that a transition
probability function Pk(m, A) is the probability that any of its descendants has the maturity in the set A, where A ∈ Σ and
Σ is the σ -algebra of Borel subsets of [a, 1]. A cell with a maturitym has

P (m, A) =

∞
k=1

kbk(m)Pk(m, A) (4)

descendants with parameters in the set A in a unit of time, where bk(m) denotes the rate at which a cell with maturity m
produces k individuals. By

b(m) =

∞
k=1

kbk(m) (5)

we denote the mean number of its descendants in a unit of time. Let ba(m) = P (m, {a}) and br(m) = P r(m, [a, 1]), where

P r(m, A) = P (m, A \ {a}). (6)

We assume that for each m the measure P r(m, ·) is absolutely continuous with respect to the Lebesgue measure for a.e.
m. Then, by the Radon–Nikodym theorem, there exists a unique operator P defined on the space L1[a, 1] such that for each
nonnegative function f ∈ L1[a, 1] and each set A ∈ Σ we have

A
Pf (m) dm =

 1

a
P r(m, A)f (m) dm. (7)

The main result of this paper (Theorem 1) gives sufficient conditions for solutions of Eq. (1) to have asynchronous
exponential growth (AEG), i.e.

N(m, t) ∼ Ceλtv(m) if t → ∞, (8)

where v(m) is a stationarymaturity profile. The proof of themain result uses techniques of stochastic semigroups [5,19–22]
and it mainly relies on a theorem concerning asymptotic stability of partially integral stochastic semigroups [21]. The AEG
property is usually verified by methods from spectral theory of positive semigroups [23] which are technically difficult. Our
approach does not require the analysis of thewhole spectrum of the generator of the semigroup. The novelty of ourmethods
is the application of Proposition 5 from [21], which states that a partially integral stochastic semigroup is asymptotically
stable iff it has a unique and positive invariant density.

The outline of the paper is as follows. The main result is formulated in Section 2. In Section 3 we show that an operator
which appears in the dual equation has a positive eigenvector. In Section 4 we show that Eq. (1) generates a semigroup
{T (t)}t≥0 of nonnegative operators and, bymaking a change of variables,we replace Eq. (1)with another onewhich generates
a stochastic semigroup {S(t)}t≥0. In Section 5we construct the unique invariant positive density for the stochastic semigroup
{S(t)}t≥0. Section 6 contains the proof of the main result. We show that the semigroup {S(t)}t≥0 is asymptotically stable,
which implies that semigroup {T (t)}t≥0 has asynchronous exponential growth.

2. Formulation of the result

Let N(t,m) be the density of individuals with maturity m at time t . Then
 m2
m1

N(t,m) dm denotes the number of cells at
time t with the parameter m from the interval [m1,m2]. We study Eq. (1) with boundary condition (2) and with the initial
condition

N(0,m) = N0(m) for m ∈ [a, 1]. (9)

We assume that g: [a, 1] → [0, ∞) is a continuously differentiable function satisfying g(m) > 0 for m ∈ [a, 1) with
g(1) = 0 and that the functions µ, ba, br , b: [a, 1) → [0, ∞) are bounded, continuous, and measurable. We additionally
assume that the derivatives µ′(1), g ′(1) exist with g ′(1) < 0 and that for everym ∈ (a, 1) 1

m
P (m, [a,m)) dm > 0. (10)

One can interpret (10) as follows: for every m ∈ (a, 1) a cell with parameter less than m can be a daughter of a cell with
parameter greater than m. We also assume that a mother cell with parameter m cannot have daughters with parameter
greater thanm − hwhich can be stated as

Pk(m, [a,m − h]) = 1 for allm ∈ [a, 1], k ≥ 1. (11)
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