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1. Introduction and motivation

In the past, especially in recent decades, several authors proved many interesting inequalities for the Euler gamma func-
tion (we refer the reader to [1-21] and all the references given therein). The aim of this article is to present new inequalities
which improve some results given by Alzer [22], Anderson and Qiu [23], and Li and Chen [24].

Anderson and Qiu [23] used the increasing monotonicity of the function

Inl"(x+1)
> —, x>1
xInx
to prove that for every x > 1,

XTI o Px) < X1 (1)

where y = 0.577215 - - - is the Euler—-Mascheroni constant.

The inequalities of type (1) have attracted the attention of many researchers, because of their simple form, and of their
usefulness in practical applications in pure mathematics or other branches of science such as probabilities, engineering, or
statistical physics.

Alzer [22, Theorem 2] refined and sharpened (1), proving that

XV o P x) <PV x>, (2)

where the constants & = (72/6 — y) /2 and B = 1 are the best possible.
A simple calculation shows that for all sufficiently large x the bounds given in (2) for 8 = 1 are better than those corre-
sponding to «. As a consequence, performant approximations of the form

I (x) & xP0D7y x50
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are obtained if and only if 8 (x) becomes closer to 1, as x approaches infinity. Motivated by this remark, we improve (2), by
proving the following double inequality

POy _ p *x) < Xﬁz(X)(X—U—V, X > 55, (3)
where
1 1\ 1 M
Pr)=1——+|\yv+5)-———
Inx 2/ x xlnx

i —In-&£ —
with 4 = In i 0.081061.. ., and
1 1\ 1
fr)=1—"——+|y+-)—.
Inx 2/ x
Another direction for refinement (1) was introduced by Li and Chen [24], who proved that
XV X172

<I'®<——, x=3, (4)

ex—
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where the constants y and 1/2 are the best possible. It is to be noticed that for all sufficiently large x the upper bound given
in (4) is better than the lower bound. As a consequence, performant approximations of the form

Xxfé(x)

r (X) ~ ex—l

, X—> 00

are obtained if and only § (x) becomes closer to 1/2, as x approaches infinity. Motivated by this remark, we improve (4), by
proving the following double inequality

K010 XxX—82(%)
< re<——, x>1, (5)
where
1 " 1 " 1
61 (x) = = _—, 5y (X) = — _—
1 2+lnx 2(®) 2+1nx 12x

The results (1), (2) and (4) were stated using monotonicity and convexity properties of some functions which are connected
with the gamma and psi functions and their derivatives.
We mainly use here the following inequality, for every x > 0,

1 1 1 1
In+/2 —Inx+xlnx —x+ — — Inl"(x+1 Inv/2 —Inx+xInx —x+ —. 6
Tk Xt T ox  3e0e -~ MTEED < Tk g Xt i (6)

This double inequality is a consequence of an excellent result of Alzer [25, Theorem 8], also mentioned in [22, Relation 4.7].
Our method is quite elementary and we are convinced that it is suitable for obtaining other new, performant estimates
for the gamma function and for the special functions in general.

2. The results

Theorem 1. For every x > 55, we have:

X(l—ﬁ+(1/+%)%—ﬁ)(x—l)—y - ® <X(l—ﬁ+(y+%)%)(x—l>—y 7)

(the left-hand side inequality holds for every x > 2).
Proof. By taking the logarithm and replacing x by x + 1, the left-hand side inequality (7) can be written as

1\ xIn(x+ 1) X
Inr" 1 1 1) — = -
nl"(x+1) >xlnx+1) x—|—<y+ ) X1 X1

2
Multiplying by x + 1 and using (6), it suffices to show that f (x) > 0, where

—yIn@x+1).

1 1
fx)=Kx+1 (lnx/ﬂ—l—flnx—kxlnx—x—k—

2 12x_360x3>_X(X+1)'“(X+1)+X(X+1)

— <y+%>xln(x+1)+ux+y(x—|—l)ln(x—|—l).
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