
Mathematical and Computer Modelling 57 (2013) 1395–1407

Contents lists available at SciVerse ScienceDirect

Mathematical and Computer Modelling

journal homepage: www.elsevier.com/locate/mcm

Learning performance of elastic-net regularization
Yu-long Zhao ∗, Yun-long Feng
Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong, China

a r t i c l e i n f o

Article history:
Received 13 June 2011
Received in revised form 22 November
2012
Accepted 25 November 2012

Keywords:
Learning theory
Elastic-net regularization
ℓ2-empirical covering number
Learning rate

a b s t r a c t

In this paper, within the framework of statistical learning theory we address the elastic-
net regularization problem. Based on the capacity assumption of hypothesis space
composed by infinite features, significant contributions are made in several aspects.
First, concentration estimates for sample error are presented by introducing ℓ2-empirical
covering number and utilizing an iteration process. Second, a constructive approximation
approach for estimating approximation error is presented. Third, the elastic-net learning
with infinite features is studied and the role that the tuning parameter ζ plays is also
discussed. Finally, our learning rate is shown to be faster compared with existing results.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction and main results

During the last few decades, several regularized methods for linear regression have been adopted to overcome
deficiencies of ordinary least square regression on prediction and interpretation. Shrinking coefficients toward zero, ridge
regression [1] achieves better prediction performance through a bias-variance trade-off. However, ridge regression is not
able to provide a sparse model which can be interpreted better since the coefficients are shrunken toward zero but never
become zero exactly. Aiming at continuous shrinkage and automatic variable selection simultaneously, a penalized least
squares method called LASSO is proposed [2] by imposing an ℓ1-regularizer on regression coefficients. Different from ridge
regression, coefficients in LASSO can be shrunken toward zero exactly, which leads tomuch better interpretability. However,
in some special cases the LASSO also shows its deficiency, for example when the variables have group effects or the number
of predictors is much larger than the number of observations [3]. Mindful of these flaws, a regularized regression scheme
generated by a combination of the LASSO and ridge penalty is proposed. Itwas first introduced in [3] and then analyzed in [4].
It is demonstrated that the elastic net often outperforms LASSO and simultaneously preserves the sparse property [4,3]. The
advantages of this regularization scheme have been also confirmed by various applications [4,3,5,6].

In this paper, we focus on the statistical properties of this scheme and in particular its consistency property, which is
studied within the framework of statistical learning theory. To address this problem, we first present a mathematical setup,
which follows the setting in [4].

The regression problem aims at learning a regression function on a separable metric space X (called the input space)
with values in Y = R. The elastic net algorithm is given in terms of finite set {ϕk}

N
k=1 of continuous functions on X with

sufficiently large N , which is a subset of a dictionary {ϕk}k∈Γ with cardinality |Γ | countable, where |Γ | ≥ N . Its regularizer
is an elastic net penalty on RN . In fact the learning algorithm can be extended to the infinite case, as we will explain later.
We first present the definition of elastic net penalty.
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Definition 1. Let ζ > 0, the elastic net penalty pζ : RN
→ [0,∞) is defined as

pζ (β) =

N
k=1

{|βk| + ζβ2
k }

where N is a positive integer.

The hypothesis space HN for the regularization scheme consists of linear combinations of N features: fβ =
N

k=1 βkϕk.

We adopt the setting introduced in [4], which also can be found in [7]. Explicitly, HN =


f : f =

N
k=1 βkϕk


is a subset of

HΓ , which is defined as

HΓ =


f : f =


k∈Γ

βkϕk, βk ∈ R


. (1.1)

Then elastic net algorithm is now defined for a given sample z = {(xi, yi)}mi=1 ∈ (X × Y )m by

fz = arg min
fβ∈HN


1
m

m
i=1

(fβ(xi)− yi)2 + λPζ (fβ)


, (1.2)

where λ = λ(m) ≥ 0 is a regularization parameter and Pζ (fβ) := pζ (β).
As mentioned above, in this paper we are interested in the learning ability of the algorithm (1.2). To this end, we take

a common model in learning theory and assume that ρ is a Borel probability measure on Z := X × Y and the regression
function is defined by

fρ(x) =


Y
ydρ(y|x), x ∈ X, (1.3)

where ρ(·|x) is the conditional probability measure induced by ρ at x ∈ X .
In the supervised learning framework, ρ is unknown and one cannot obtain the regression function fρ directly. Indeed,

we learn the regression function from the sample z = {(xi, yi)}mi=1 ∈ Zm, which is assumed to be drawn independently
according to the measure ρ. Throughout this paper, we assume that ρ(·|x) is supported on [−M,M], for some M > 0. The
learning ability of the algorithm (1.2) is measured by the error ∥fz − fρ∥L2ρX

of the difference function fz − fρ in the space L2ρX
where ρX is the marginal distribution of ρ on X .

Considering that the analysis in this paper is based on the complexity assumption of the hypothesis space, we need the
following capacity condition for HΓ in terms of ℓ2-empirical covering numbers.

Definition 2. Let (M , d) be a pseudo-metric space and S ⊂ M a subset. For every ϵ > 0, the covering number N (S, ϵ, d)
is defined as the minimal number of balls of radius ϵ whose union covers S, that is,

N (S, ϵ, d) = min


ℓ ∈ N : S ⊂

ℓ
j=1

B(sj, ϵ) for some {sj}ℓj=1 ⊂ M


,

where B(sj, ϵ) = {s ∈ M : d(s, sj) ≤ ϵ}.

Let d2 be the normalized metric on the Euclidian space Rn given by

d2(a, b) =


1
n

n
i=1

|ai − bi|2
1/2

for a = {ai}ni=1, b = {bi}ni=1 ∈ Rn.

Definition 3. Let F be a set of functions on X, x = (xi)ni=1 ⊂ Xn and F |x = {(f (xi))ni=1 : f ∈ F } ⊂ Rn. Set
N2,x(F , ϵ) = N (F |x, ϵ, d2). The ℓ2-empirical covering number of F is defined by

N2 (F , ϵ) = sup
n∈N

sup
x∈Xn

N2,x (F , ϵ) , ϵ > 0.

Assumption 1. The space HΓ has empirical polynomial complexity with exponent p, where 0 < p < 2. That is, there exists
a constant cp,HΓ

> 0 such that

logN2(B1, ϵ) ≤ cp,HΓ


1
ϵ

p

, ∀ϵ > 0, (1.4)

where B1 is the subset of HΓ defined by BR = {fβ ∈ HΓ : ∥β∥ℓ1 ≤ R} ∩ {fβ ∈ HΓ : ∥β∥ℓ2 ≤


R
ζ
} with R = 1.
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