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1. Introduction and main results

During the last few decades, several regularized methods for linear regression have been adopted to overcome
deficiencies of ordinary least square regression on prediction and interpretation. Shrinking coefficients toward zero, ridge
regression [ 1] achieves better prediction performance through a bias-variance trade-off. However, ridge regression is not
able to provide a sparse model which can be interpreted better since the coefficients are shrunken toward zero but never
become zero exactly. Aiming at continuous shrinkage and automatic variable selection simultaneously, a penalized least
squares method called LASSO is proposed [2] by imposing an £!-regularizer on regression coefficients. Different from ridge
regression, coefficients in LASSO can be shrunken toward zero exactly, which leads to much better interpretability. However,
in some special cases the LASSO also shows its deficiency, for example when the variables have group effects or the number
of predictors is much larger than the number of observations [3]. Mindful of these flaws, a regularized regression scheme
generated by a combination of the LASSO and ridge penalty is proposed. It was first introduced in [3] and then analyzed in [4].
It is demonstrated that the elastic net often outperforms LASSO and simultaneously preserves the sparse property [4,3]. The
advantages of this regularization scheme have been also confirmed by various applications [4,3,5,6].

In this paper, we focus on the statistical properties of this scheme and in particular its consistency property, which is
studied within the framework of statistical learning theory. To address this problem, we first present a mathematical setup,
which follows the setting in [4].

The regression problem aims at learning a regression function on a separable metric space X (called the input space)
with values in Y = R. The elastic net algorithm is given in terms of finite set {(,ok}ﬁ:1 of continuous functions on X with
sufficiently large N, which is a subset of a dictionary {¢y}xc with cardinality |I"| countable, where |I"| > N. Its regularizer
is an elastic net penalty on RV, In fact the learning algorithm can be extended to the infinite case, as we will explain later.
We first present the definition of elastic net penalty.
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Definition 1. Let { > 0, the elastic net penalty p; : RN — [0, 00) is defined as

N
pe(B) =Y (1Bl + ¢BY)
k=1

where N is a positive integer.

The hypothesis space #y for the regularization scheme consists of linear combinations of N features: fg = Zgzl Brpr-
We adopt the setting introduced in [4], which also can be found in [7]. Explicitly, #y = {f f = zﬁ;l ,Bkgok} is a subset of
Fr, which is defined as

Hr = if:f=2ﬂk<pk, ﬂkeR}. (1.1)
kel
Then elastic net algorithm is now defined for a given sample z = {(x;, y;)}[L; € (X x Y)™ by
-l m
: 2
=arg min | — Xi) —Vi)* + AP, R 1.2
o = arg min (m ;(fﬁ( D=y :(fﬁ)) (12)

where A = A(m) > 0is a regularization parameter and #; (fg) := p; (B).

As mentioned above, in this paper we are interested in the learning ability of the algorithm (1.2). To this end, we take
a common model in learning theory and assume that p is a Borel probability measure on Z := X x Y and the regression
function is defined by

fr® zfydp(ylx), xeX, (1.3)
Y

where p(-|x) is the conditional probability measure induced by p atx € X.

In the supervised learning framework, p is unknown and one cannot obtain the regression function f, directly. Indeed,
we learn the regression function from the sample z = {(x;, ;)}[L; € Z™, which is assumed to be drawn independently
according to the measure p. Throughout this paper, we assume that p(-|x) is supported on [—M, M], for some M > 0. The
learning ability of the algorithm (1.2) is measured by the error ||f; —f, || 1, of the difference function f, — f, in the space Lf)x

where px is the marginal distribution of p on X.
Considering that the analysis in this paper is based on the complexity assumption of the hypothesis space, we need the
following capacity condition for # in terms of ¢2-empirical covering numbers.

Definition 2. Let (.#, d) be a pseudo-metric space and S C .# a subset. For every € > 0, the covering number N (S, €, d)
is defined as the minimal number of balls of radius € whose union covers S, that is,

¢
N (S, €,d) = min {Z eN:SC UB(sj, €) for some {s; le C %} ,
j=1
where B(sj, €) = {s € .# : d(s, s;) < €}.

Let d, be the normalized metric on the Euclidian space R" given by

1/2
1 n
dy@a,b) = (n > lai— b,~|2> fora={a}_,, b= (b}, € R".
i=1

Definition 3. Let ¥ be a set of functions on X,Xx = (x)i; C X"and Flx = {fx)L, : f € F} C R Set
Nox(F,€) = N(Flx, €, dp). The £2-empirical covering number of ¥ is defined by
Ny (F,€) =supsup My (F,€), €>0.

neN xexn

Assumption 1. The space J#¢ has empirical polynomial complexity with exponent p, where 0 < p < 2. That is, there exists
a constant ¢ s, > 0 such that

1 p
log N2 (By, €) < Cp 5 (6) , Ye>0, (1.4)

where Bj is the subset of # defined by B = {fg € #r : [|Bllg <R} N{fg € Hr : 1Bl < \/g} withR = 1.



Download English Version:

https://daneshyari.com/en/article/7542663

Download Persian Version:

https://daneshyari.com/article/7542663

Daneshyari.com


https://daneshyari.com/en/article/7542663
https://daneshyari.com/article/7542663
https://daneshyari.com

