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1. Introduction

These iterated Bernstein operators were investigated in the 60’s and 70’s by P.C. Sikkema [ 1], R.P. Kelisky & T.J. Rivlin [2],
S. Karlin & Z. Ziegler [3], ]J. Nagel [4], M.R. da Silva [5] and Gonska [6,7]. Some of this research was later generalized by
Altomare et al. (see, for example, [8-10]). Altomare suggested to use in this context an approach described by Dickmeis and
Nessel [11]. This was done recently by Rasa in [12,13]. Other new papers related to the subject of this article was written
by S. Ostrovska [ 14] on iterates of g-Bernstein polynomials and N.I. Mahmudov [15] on iterates of positive linear operators
which preserves e;.

The methods employed to study the convergence of iterates of some operators occurring in the Approximation Theory
include Matrix Theory methods, like stochastic matrices [ 16-18], Korovkin-type theorems [3], quantitative results about the
approximation of functions by positive linear operators [19,20], fixed point theorems [21-23], or methods from the theory
of Cp-semigroups, like Trotter’s approximation theorem [3,24]. However, these techniques fail to work for the Meyer-Kénig
and Zeller (MKZ) or the May operators. Very recently, I. Gavrea and M. Ivan [25] proved that the iterates of the MKZ operates
converges strongly to P(f; x) = (1 — x)f(0) + xf(1). Once such convergence have been obtained, the following natural
question is to ask for rates of convergence. In Section 3, as a consequence of our results, we obtain the quantitative estimates
for the iterates of the g-MKZ (0 < q < 1) operators, which is completely new.

On the other hand, because of its powerful applications, Korovkin’s result has been extended in many directions. There
is an extensive literature on Korovkin-type theorems, which may have had a summit already about twenty five years ago. In
particular, there exist abstract results that cover many naturally arising concrete cases. The contributions up to about 1994
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are excellently documented in the book of Altomare and Campiti [ 10]. More recent results obtained in [26,27,15] cover also
approximation of g-type operators.

In this paper we establish quantitative Korovkin type theorem for the iterates of certain positive linear operators T :
C[0, 1] — C [0, 1]. Notice that, the special case when T preserves e, thatis, when T (e,; x) = x?, 0 < x < 1 was considered
in [15] and results of [15] include only King type g-operators. In this paper, as a consequence of our main results, we obtain
the quantitative estimates for the iterates of almost all classical and new positive linear operators: the g-MKZ operators,
the g-Stancu operators, the genuine g-Bernstein-Durrmeyer operators in the case 0 < ¢ < 1 and the Cesaro operators. It is
worth mentioning that for ¢ = 1 these operators become classical MKZ, Stancu and genuine Bernstein-Durrmeyer operators.

2. Main results

The following notations will be used throughout this paper. The classical Petree’s K-functional and the second modulus
of smoothness of a function f are defined respectively by

— _ ”
K (f.t) = geclgl[g” {If =gl +1t|g"|}

and

wr(f,t) ;== sup sup |f(x+2h) —2f(x+h) +f(x)].
O<h<t 0<x<1-2h

It is known that there exists a constant C > 0 such that

Ky (f, t) < Can(f, Vt). (1)

Lete; : [0, 1] — R be the monomial functions e; (x) = x',i = 0, 1, 2.
Now we formulate the main results of the paper. First result shows that under the conditions (2) the iterates of
T :CJ[0,1] — C[0, 1] converge to some linear positive operator T* : C [0, 1] — C[O0, 1].

Theorem 1. Suppose that T : C[0, 1] — C [0, 1] is a positive linear operator such that

T (eo0) = eo, T (e1; %) <%,
lim ||[T™ (e) — fi]| = lim |T™(e2) =] =0, fi.fp € Cl0,1]. )
m—00 m— 00

Then there exists a linear positive operator T : C [0, 1] — C [0, 1] such that the following pointwise estimate

(T = T%) (9] < ke (£, V/om 00) + K1 8 0 (3)
holds true for x € [0, 1] and f € C [0, 1], where k is an absolute constant and

Am (%) = max {[(T™ = T) (er; 0|, |(T™® = T™) (e2; 0|},

m (0) = |(T™ = T%) (e1; )] .

’

Proof. It follows from the proof of [ 15, Theorem 1] that

1
(T =T") g 0| = 5 & [ [T = T7) ez 0] + ([l&”] + &) |(T" = T™*) Cexs 0] (4)
So {T™ (f; x)} is a Cauchy sequence in C [0, 1] and there is a linear positive operator T*° (f) such that
lim |[T" () —T® ()| =0
m—0o0
for any f € C[0, 1]. Taking the limit as p — oc in (4) and using the well known inequality

&'l = ¢ (gl + Jlg”)
we have
1
2

3
<5 + C1) Am ) [[€"] + C18m ) lgl - (5)

(T = T7) (&: )]

IA

Jg7 117 = 1) 0] + (18" + /1) (77 = ) i)

IA
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