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a b s t r a c t

This paper answers the challenge as how to automatically select a good regularization parameter when
solving inverse problems in acoustics. A Bayesian solution is proposed that consists either in directly find-
ing the most probable value of the regularization parameter or, indirectly, in estimating it as the ratio of
the most probable values of the noise and source expected energies. It enjoys several nice properties such
as ease of implementation and low computational complexity (the proposed algorithm boils down to
searching for the global minimum of a 1D cost function). Among other advantages of the Bayesian
approach, it makes possible to appraise the sensitivity of the reconstructed acoustical quantities of inter-
est with respect to regularization, a performance that would be otherwise arduous to achieve.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The inverse acoustic problem aims at reconstructing an acoustic
quantity of interest (e.g. parietal pressure, particle velocity, acous-
tical intensity) from a limited number of remote measurements –
as typically returned by an array of microphones or probes. As
well-known, this is an ill-posed problem in the sense of
Hadamard – i.e. it may have no solution at all or the solution
may not be unique and it may be extremely sensitive to slight
changes in the initial conditions [1] – for its exact solution would
require measuring the complete field over a surface enclosing the
source(s) of interest. As a consequence, solutions of an ill-posed
inverse acoustic problems are typically found unstable with
respect to very small perturbations in the measurements. Since
ill-posedness fundamentally results from unavoidable loss of infor-
mation during the measurement process, the usual cure is to regu-
larize – i.e. to modify – the inverse operator so as to control the
magnitude or energy of the expected solution within plausible lim-
its [2–11]. In practice, the resort to regularization is just as essen-
tial as it is difficult and, in many aspects, it appertains as much to
an art as to exact science.

The prevailing approach in acoustics and vibration is surely the
popular Tikhonov regularization (control of the energy of the solu-
tion) [1,12–17]. A critical aspect of Tikhonov regularization – actu-
ally shared by most regularization techniques – is how to
automatically determine the amount of regularization to be

introduced in the system, which translates into the determination
of a ‘‘regularization parameter’’. Several strategies have been
developed in this perspective, however, at the present time, there
is still no absolutely universal method that is robust enough and
always produces good results. Amongst the parameter choice
methods used in the field of acoustics and vibration, the
Generalized Cross Validation (GCV) [18] and the L-curve [19] seem
to prevail largely, although other methods have been investigated
such as the Normalized Cumulative Periodogram (NCP) [20,21] and
the Morozov discrepancy principle. The latter depends on a good
estimate of the measurement noise level, that may not be available
in practice. NCP is a relatively recent method whose idea is to track
the aspect of the residual error as the regularization parameter
changes and select the parameter for which the residual can be
considered as close as possible to white noise. Several papers in
the literature provide comparisons of different parameter choice
methods, either applied in acoustics [10,22–26] or in vibrations
[27]. A general conclusion is that the behavior of each method is
very problem-dependent and no consensus on which one is the
best has been reached. Indeed, the inverse acoustic problem is
sometimes so much ill-posed that choosing a proper regularization
strategy can make a real difference. Recent publications in acous-
tics propose different regularization techniques, such as iterative
methods (beneficial when dealing with large-scale problems)
[28], Tikhonov regularization in its general form (i.e. by the use
of discrete smoothing norms) [2], and a sparse regularization tech-
niques [29–31], to cite only a few. Most of them still depend on
either a regularization parameter that must be optimally tuned
or on a stopping rule for the iterative methods. In a more general
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context (i.e. outside the field of acoustics), Ref. [32] provides an
extensive comparison of several parameter choice methods by
means of a large simulation study.

This paper introduces a Bayesian approach to regularization
that is conceptually rather different from former methodologies
that have been prevailing in inverse acoustics. The key idea is to
conceive regularization as the introduction of prior information
to compensate for the loss of information resulting from the mea-
surement process; this is achieved in the form of a probability den-
sity function that characterizes all physically plausible values of
the solution before the inverse problem is solved. The solution of
the inverse problem – including the reconstruction of the acousti-
cal quantity of interest plus the optimal tuning of the regulariza-
tion parameter – is then found as the most probable values that
comply with both the measurements and the prior information.
In the special case of a Gaussian prior – which is investigated only
in this paper – the proposed Bayesian regularization scheme boils
down to the same structure as Tikhonov regularization, yet with
the definite advantage of providing rigorous criteria for automati-
cally tuning the regularization parameter. It is shown in this paper
that the proposed Bayesian regularization enjoys several advan-
tages as compared to other criteria traditionally used in inverse
acoustics such as GCV and the L-curve:

� for a large range of acoustical configurations (simulation and
experiments), it generally returns a regularized solution which
is (in the least-square sense) closer to the optimal one,
� for a large range of physical/acoustical parameters (level of

noise, frequency range, degree of ill-posedness) it is generally
more robust to (strong) additive noise,
� it lends itself to easy implementation for it boils down to

searching for the global minimum of a 1-D cost function,
� it is fully automatic and does not involve any tuning parameter

(it actually returns the noise level and expected source energy as
byproducts).

These advantages surely deserve a thorough introduction of
Bayesian regularization to the acoustical community, even though
the mathematical apparatus required may seem far from the
acoustical discipline. As a consequence, the first part of the paper
(in particular Section 2) is presented as a tutorial before some
novel theoretical and experimental results are introduced in other
sections. In spite of several precursory Refs. [33–44], the Bayesian
regularization does not seem to have attracted much attention in
acoustics (possibly because many of the former early works came
with complex iterative algorithms). It is part of the present paper
aim to partly fill in this gap. The paper also highlights several
important properties which, according to the authors’ knowledge,
have never been recognized before. Part of the present material
was first published in Ref. [45], which aimed at finding an optimal
basis for source reconstruction and demonstrating the benefit of
taking prior information into account within a Bayesian
framework. Herein, the focus is on Bayesian regularization
only and its generalization to any reconstruction basis, be it
optimal or not. The paper contains several original results listed
hereafter.

� A theoretical proof is given about the existence of a global mini-
mum of the Bayesian regularization criterion; this property is of
prime practical importance since it confers good robustness to
regularization (e.g. as compared to GCV and the L-curve for
which a global minimum does not exist in general); in addition,
it makes possible an automated practice of regularization.
� The posterior probability density function of the regularization

parameter is given in the case of complex-valued data (i.e.
Fourier transformed data); this is found useful to assess the

errors due to regularization in all acoustical quantities of inter-
est and, as far as the authors know, a sensitivity analysis to
regularization is demonstrated here for the first time.
� Physical interpretation of Bayesian regularization is given in

terms of energy (first principle of thermodynamics) which,
hopefully, will participate to bridge the gap between an abstract
probabilistic theory and the intuition gained from physics.
� Extensive experimental results are given, both on numerical

and on actual data, that clearly demonstrate the supremacy of
Bayesian regularization over the GCV and L-curve methods.

The paper is organized as follows. The second section first intro-
duces general facts about the direct acoustic problem and then
addresses the inverse problem within the Bayesian probabilistic
framework. One objective of this section is to introduce the nota-
tions and probabilistic premises necessary for the remaining of
the paper, and preferably so in a self-contained treatment of the
acoustic inverse problem. As mentioned above, it should be read
as a tutorial on the Bayesian approach to inverse (acoustic) prob-
lems. The third section addresses the issue of Bayesian regulariza-
tion, where several new results are established after scrupulously
following the Bayesian program. Theoretical developments are
accompanied by discussions relating to the properties and practical
aspects of the proposed algorithms. The fourth section is an
attempt to demonstrate a physical meaning of the proposed
Bayesian regularization criteria in terms of thermodynamics. The
fifth section addresses the important question as how sensitive
the inverse problem is to regularization, to which the Bayesian
framework is shown to provide a rather unique answer. Finally,
the sixth section is devoted to comparing Bayesian regularization
with the state-of-the-art methods, thus demonstrating its asserted
superiority.

2. Bayesian approach to the inverse acoustic problem: a tutorial

The object of this section is to cast the inverse acoustic problem
within the Bayesian probabilistic framework. This is not only
necessary to introduce the fundamental ideas and notations to be
used in derivation of the Bayesian regularization criterion in
Section 3 (the central result of the paper), but it also offers
upstream justification to the classical cost function used in inverse
acoustics and its ad hoc Tikhonov regularization. Since most of the
results presented in this section can be recovered by compiling the
Bayesian literature on linear models, it should be read as a tutorial.
A general reference on the Bayesian approach to inverse problems
is [46]. Moreover, the treatment of the inverse problem could be
seen as dual of Bayesian linear regression [47–50] after exchanging
the role of the explanatory variables and of the regression
coefficients.1

2.1. General statement of the inverse acoustic problem

Broadly speaking, the inverse acoustic problem of interest
herein amounts to reconstructing a source distribution or ‘‘source
field’’ (e.g. parietal pressure or normal velocity) given a finite num-
ber of measurements, as typically returned by an array of micro-
phones (or possibly velocity or pressure–velocity probes). More
formally, let qðrÞ; r 2 C, be the source field of interest and C its

1 The objectives of linear regression are, strictly speaking, oriented towards solving
the direct and not the inverse problem. However, the inverse problem can be tackled
after exchanging the roles of the explanatory variables and of the regression
coefficients. Although this might seem artificial at first glance because the regression
coefficients are, from a physical point of view, not variables but deterministic
‘‘transfer functions’’, it causes no problem in the Bayesian framework where all
parameters are regarded as random.
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