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Abstract

Using the Filippov method, the stability of a nominal cyclic steady state of a nonlinear dynamic system (a buck dc–dc converter)
is investigated. A common approach to this study is based upon a complete clock period, and assumes that the input is from a
regulated dc power supply. In reality, this is usually not the case: converters are mostly fed from a rectified and filtered source. This
dc voltage will then contain ripples (i.e. the peak-to-peak input voltage is not zero). Therefore, we consider the input as a sinusoidal
voltage. Its frequency is chosen as a submultiple T of the converter’s clock and our objective is to analyze, clarify and predict some
of the nonlinear behaviors that these circuits may exhibit, when the input voltage frequency changes in time. This input frequency’s
parameter T determines the number of the switching instants over a whole clock cycle, obtained as Newton–Raphson solutions.
Then, for the considered buck converter, we develop a mathematical model in a compact form of the Jacobian matrix with a variable
dimension proportional to the input voltage harmonics. Finally, the Floquet multipliers of the monodromy matrix are used to predict
the system stability. Numerical examples illustrate how these multipliers cross the unit cycle causing various bifurcations.
c⃝ 2017 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

Power electronic circuits are dynamical systems with differential equations having discontinuous right-hand sides
and with discrete switching events between a set of nonlinear differential equations. Because of the passage through
more than one subsystem, the study of periodic orbit stability requires special techniques. During the last two decades,
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a number of methods to study the stability of nominal cyclic steady states in power electronic converters have been
reported in the literature [3,14,31].

Based on its simplicity, the average technique to obtain the stability information and dynamic behavior of power
converters is commonly used. If, comparing the system time, the switching period is small enough, its dynamics can
be approximated by an averaged dynamic model, in which the high-frequency switching is neglected. In [3,31], it was
shown that the averaging technique eliminates the nonlinear effects that occur on slow time scales and destroy all the
details about clock frequencies.

Another approach uses an iterated map as a model of power converters preserving nonlinear effects. This technique
offers a discrete observation of the states of the converter at every clock instant, obtaining a discrete-time nonlinear
map or Poincare map [31]. The discrete-time state describes the evolution of the state from one clock instant to the
next one. Once the nonlinear map is obtained, one can locally linearize it at the fixed point, keeping first-order terms
of the Taylor series. Finally, the map is obtained in a closed form, thus enabling the determination of the eigenvalues
of the Jacobian of the underlying discrete-time map. However, in many converters, such a map cannot be derived in a
closed form because of the transcendental form of the equation involved, and therefore this approach cannot directly
be put into applications.

Recently, the Filippov approach has been applied to systems with equations having discontinuous right-hand
sides [13], [14], providing an alternative method to obtain the Jacobian of the Poincare map when the nonlinear
map cannot be explicitly derived. From the foregoing discussions, it is interesting to note that the Filippov method
describes the stability of periodic orbits by the monodromy matrix over a complete cycle [18,19,24]. The eigenvalues
of the monodromy matrix indicate the stability of the orbit to small perturbations. One of the advantages of this method
is that it treats each switching separately and hence the overall analysis is simpler than the conventional Poincaré map
Jacobian approach when the nonlinear map cannot be determined in closed form. In that sense, the Filippov approach
achieves the same result as that obtained by the existing conventional Poincaré map approach but is much easier to
use.

Many physical processes or structures in engineering can be modeled as Filippov systems. Filippov systems are
nonlinear systems involving impact, friction, free-play, piecewise smooth, etc. They are discontinuous and exhibit
sliding and grazing bifurcations when periodic trajectories interact with the discontinuity surface, which are classified
into crossing, grazing and switching sliding bifurcations. [1] and [2] present numerical analysis of sliding dynamics on
the discontinuity boundary using an integration-free method called Singular Point Tracking. For a three-dimensional
Filippov system, local and global bifurcation scenarios are present. The structural stability of boundary equilibria
has been systematically investigated but only for two-dimensional Filippov systems. [5] studies all equilibrium
bifurcations of 2D Filippov systems that involve a sliding limit cycle. [12] goes further with the analysis and develops
a systematic method for studying both local and global bifurcations. It proves that, besides local bifurcations (Generic
Fold-Fold, Boundary-Saddle, Boundary-Node, Boundary-Focus bifurcations), a global bifurcation (Saddle–Node,
Boundary-Node and Boundary-Saddle bifurcations) exists. [28] describes how to use smooth solvers for simulation on
a dry-friction oscillator, a relay feedback system and a model of an oil well drill-string. The algorithms are based on an
extension to Filippov’s method to stabilize the sliding flows together with accurate detection of the entrance and exit
of sliding regions. [30] uses numerical and numerical-analytical methods to study the dynamics of two harmonically
excited single-degree-of-freedom discontinuous oscillators and identify bifurcations induced by discontinuity. A
four-dimensional system describing the ecological dynamics of a protected natural resource is formalized in [29]
as a Filippov system. [15] studies the electromechanical model of induction motor-driven drilling systems.

Power electronic dc–dc converters are usually used in situations where there is the need of stabilizing a given
input dc voltage to a higher (Boost), a lower (Buck) or a generic (Buck–Boost) output voltage. This is generally
achieved by chopping and filtering the input voltage through an appropriate switching action, mostly implemented
via a pulse width modulation. All the reported literature (see e.g. [3,31]) assume that the input of the dc–dc converter
is from a regulated dc power supply, which usually is not the case in reality. The converters are mostly fed from a
rectified and filtered source; in this case, this dc voltage will contain ripples (a peak-to-peak input voltage). In that
sense, a voltage-mode-controlled buck converter is used with a sinusoidal input signal [4]. Therefore, it is important
to be able to analyze, clarify and predict some of the nonlinear behaviors that these circuits may exhibit. After the
introduction of a new technique to generate independent periodic attractors in the state space [26], particularly on a
specific surface [25,27], we carried out study and analysis of the chaotic behavior of photovoltaic systems [24].

Our objective in this paper is to explore how the nonlinear phenomena occurring in a buck converter change, as the
order of the harmonics present in the input voltage ripple changes, which become a large periodic input compared with
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