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Abstract

We consider linear dynamical systems of ordinary differential equations or differential algebraic equations. Physical parameters
are substituted by random variables for an uncertainty quantification. We expand the state variables as well as a quantity of interest
into an orthogonal system of basis functions, which depend on the random variables. For example, polynomial chaos expansions
are applicable. The stochastic Galerkin method yields a larger linear dynamical system, whose solution approximates the unknown
coefficients in the expansions. The Hardy norms of the transfer function provide information about the input–output behaviour of
the Galerkin system. We investigate two approaches to construct a low-dimensional representation of the quantity of interest, which
can also be interpreted as a sparse representation. Firstly, a standard basis is reduced by the omission of basis functions, whose
accompanying Hardy norms are relatively small. Secondly, a projection-based model order reduction is applied to the Galerkin
system and allows for the definition of new basis functions within a low-dimensional representation. In both cases, we prove error
bounds on the low-dimensional approximation with respect to Hardy norms. Numerical experiments are demonstrated for two test
examples.
c⃝ 2017 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

In science and engineering, mathematical modelling often yields dynamical systems of ordinary differential
equations (ODEs) or differential algebraic equations (DAEs). We focus on linear time-invariant dynamical systems. A
quantity of interest is defined as an output of the problem. Physical parameters of the systems may exhibit uncertainties
due to measurement errors or imperfections of an industrial manufacturing, for example. The uncertainties are
described by the introduction of random variables. Since often many parameters appear in a system, we are interested
in the case of high numbers of random variables.
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We expand the state variables as well as the quantity of interest into an orthonormal system of basis functions de-
pending on the random variables. For example, the expansions of the polynomial chaos can be used, see [2,12,32,34].
Our aim is the construction of a low-dimensional approximation to the random quantity of interest, where only a
few basis functions are required for a sufficiently accurate representation. Several previous works exist concerning
the computation of such a low-dimensional approximation, which is sometimes called a sparse representation. As
a tool was used, for example, least angle regression [7], sparse grid quadrature [8], compressed sensing [10] and
ℓ1-minimisation [18,19]. Our task can also be seen as an identification of a stochastic reduced basis, which was
examined for random linear systems of algebraic equations in [22,28]. On the one hand, some methods start from a
small set of basis functions and extend the basis successively until the approximation becomes sufficiently accurate.
On the other hand, some techniques perform the choice of an initial set of basis functions, which is large and often
yields a better accuracy than required, and reduce this basis. We apply strategies of the latter type.

Either a stochastic Galerkin method or a stochastic collocation technique yields approximations to the unknown
coefficient functions in the expansions, see [23,24,32,33]. In this paper, we employ the stochastic Galerkin approach,
which induces a larger linear dynamical system with many outputs. Hardy norms provide a measure for the importance
of each output, where the H2-norm and H∞-norm are used. Since the system becomes huge for large numbers of
random parameters, a high potential for a model order reduction (MOR) appears. General theory on MOR can be
found in the monographs [1,4,30], for example. We focus on projection-based techniques for the reduction of linear
dynamical systems, see [13,14,16,17]. Projection-based MOR was applied to the stochastic Galerkin system in the
previous works [21,25–27,35].

We investigate two strategies for the construction of a low-dimensional approximation. Firstly, a large initial
basis is reduced by neglecting outputs of the Galerkin system with relatively small Hardy norms. This reduction
implies directly a low-dimensional approximation to the random quantity of interest. Secondly, a general projection-
based MOR technique decreases the dimensionality of the Galerkin system. We show that this MOR allows for the
identification of a low-dimensional approximation to the random quantity of interest provided that the reduction
achieves a sufficiently small system. In both cases, error bounds are proven for the low-dimensional representations
with respect to Hardy norms.

The paper is organised as follows. In Section 2, we introduce the problem formulation and review already existing
theory to be applied. The construction of a low-dimensional approximation by omitting basis functions is examined
in Section 3. The definition of new basis functions using the information from an MOR is discussed in Section 4. We
present numerical results for two illustrative examples in Section 5.

2. Problem definition

In this section, we define the problem under investigation. Furthermore, results from previous literature, which are
relevant for our approaches, are outlined.

2.1. Linear dynamical systems

We consider a linear time-invariant system in descriptor form

E(p)ẋ(t, p) = A(p)x(t, p) + B(p)u(t)
y(t, p) = C(p)x(t, p), (1)

where the matrices A, E ∈ Rn×n , B ∈ Rn×nin and C ∈ Rnout×n depend on physical parameters p ∈ Π ⊆ Rq . The
input u : [0, ∞) → Rnin is supplied, while the output is defined by y : [0, ∞) × Π → Rnout . If the matrix E is
regular, then the system (1) consists of ODEs with state variables x : [0, ∞) × Π → Rn . In our analysis, initial
values x(0, p) = 0 are supposed for all p ∈ Π . If the matrix E is singular, then the system (1) represents DAEs
with inner variables x . We restrict ourselves to the case of single-input–single-output (SISO) with nin = nout = 1,
because generalisations to multiple-input–multiple-output (MIMO) are straightforward. We assume that the matrix
pencil λE(p) − A(p) is regular for all p ∈ Π . Moreover, let the system (1) be stable for all p ∈ Π , i.e., the finite
eigenvalues Σ (p) ⊂ C of the matrix pencil λE(p) − A(p) exhibit a negative real part.

The transfer function H : (C \Σ (p)) → C characterises the input–output behaviour of the SISO system (1) in the
frequency domain, see [1, Eq. (4.22)] for explicit ODEs or [14, Eq. (2.8)] for DAEs. This transfer function reads as

H (s, p) := C(p)(s E(p) − A(p))−1 B(p) for s ∈ C \ Σ (p). (2)
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