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Abstract

A new neural network is proposed in this paper for solving quadratic programming problems with equality and inequality
constraints. Comparing with the existing neural networks for solving such problems, the proposed neural network has fewer
neurons and an one-layer architecture. The proposed neural network is proven to be global convergence. Furthermore, illustrative
examples are given to show the effectiveness of the proposed neural network.
© 2014 IMACS. Published by Elsevier B.V. All rights reserved.
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1.  Introduction

In the past decades, neural networks for optimization have been widely investigated. Hopfield and Tank first proposed
the neural network for linear programming problems [11,20]. Their work has inspired many researchers to investigate
other neural network models for solving programming problems. Kennedy and Chua [14] presented a neural network for
solving nonlinear programming problems. It is known that the neural network model contains finite penalty parameters
and generates approximate solutions only. To avoid using penalty parameters, many other methods have been proposed
in recent years, see [28,23,7,21,26,2].

Quadratic programming problems arises in a broad variety of scientific and engineering applications, including
regression analysis, signal processing, image restoration, robot control, etc. Also, some nonlinear optimization problems
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are usually approximated by a quadratic programming problem. In general, the quadratic programming problem can
be written the following form

minimize
1

2
xT Wx  +  cT x

subject to Ax  =  b

x≥0.

Many neural networks for the above problem have been proposed. For example, some primal-dual neural networks
were presented [24,22,3,4]. In order to simplify the architecture of the dual neural network, a simplified dual neural
network was introduced [15,12]. Using the projection theorem, several projection neural networks were developed
to solve quadratic programming problems [8,27,10,18,13,5,16,17,29,9], which were globally convergent to exact
optimal solutions. In [16,17], Liu and Wang proposed some one-layer recurrent neural networks for solving quadratic
programming problems. The one-layer recurrent neural networks have more simple architecture complexity than the
other neural networks such as Lagrangian network and projection network.

Up to now, only a few neural networks have been developed to solve the following quadratic programming problems
with equality and inequality constraints.

minimize
1

2
xT Wx  +  cT x

subject to Ax  =  b

Bx  ≤  d

(1)

where x = (x1, x2, .  . ., xn)T ∈ Rn, W  is an n  ×  n real symmetric positive semidefinite matrix, c  ∈  Rn, A  ∈  Rm×n,
rank(A) = m  (0 < m  < n), B  ∈  Rp×n, b  ∈  Rm, d ∈  Rp.

Zhang and Wang [30] and Xia et al. [25] treated equality and one-sided inequality constraints as special cases of
two-sided bound constraints. It need sufficiently large numbers to represent down bound −∞  or up bound +∞, which
is disadvantageous for the design of neural network. Effati and Nazemi [6] proposed a neural network for solving
this problem from the Karash–Kuhn–Tucker (KKT) conditions. However, this neural network has more neurons and
requires stronger convergence conditions.

Motivated by the above discussions, the aim of this paper is to develop a new neural network for solving (1). It has
fewer state variables, the lower structure complexity and weaker convergence conditions.

The rest of this paper is organized as follows. In Section 2, a new neural network model is proposed. In Section 3,
the global convergence of the proposed neural network is investigated. In Section 4, several illustrate examples are
given to show the effectiveness of the proposed neural network. Conclusions are found in Section 5.

2.  The  neural  network  model

In this section, we will give the neural network model for solving problem (1).
Several neural network models based on the KKT conditions of the convex optimization problems have been

proposed for solving quadratic programming problems with equality and inequality constraints [6,25,30]. These neural
network models need m  state variables to satisfy equality constraints (5) in the KKT conditions. To simply the network
architecture, we give the following Lemma.

Lemma  1.  x* is  an  optimal  solution  of  (1) if  and  only  if  there  exist  y* ≥  0 such  that  (x∗, y∗)T satisfies:

(I  −  P)(Wx∗ +  c  +  BT y∗) +  Q(Ax∗ −  b) =  0 (2)

(y∗ +  Bx∗ −  d)+ −  y∗ =  0 (3)

where P  =  AT (AAT )
−1

A, Q  =  AT (AAT )
−1

, and (y)+ =  ([y1]+,  .  .  ., [yn]+)T , [yi]+ = max{0, yi}.
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