ARTICLE IN PRESS

Discrete Optimization 🛛 (

Contents lists available at ScienceDirect

Discrete Optimization

www.elsevier.com/locate/disopt

Upper bound on 3-rainbow domination in graphs with minimum degree 2

Michitaka Furuya^{a,*}, Masaki Koyanagi^b, Maho Yokota^c

^a College of Liberal Arts and Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan

^b Department of Mathematical Science for Information Sciences, Tokyo University of Science,

1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

^c Department of Applied Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

ARTICLE INFO

Article history: Received 25 July 2017 Accepted 14 February 2018 Available online xxxx

MSC: 05C69

Keywords: 3-rainbow domination number 3-rainbow dominating function

ABSTRACT

Let $k \geq 1$ be an integer, and let G be a graph. A function $f: V(G) \to 2^{\{1,\ldots,k\}}$ is a k-rainbow dominating function of G if every vertex $x \in V(G)$ with $f(x) = \emptyset$ satisfies $\bigcup_{y \in N_G(x)} f(y) = \{1, \ldots, k\}$. The k-rainbow domination number of G, denoted by $\gamma_{rk}(G)$, is the minimum weight $w(f) = \sum_{x \in V(G)} |f(x)|$ of a k-rainbow dominating function f of G. In this paper, we prove that for every connected graph G of order $n \geq 8$ with $\delta(G) \geq 2$, $\gamma_{r3}(G) \leq \frac{5n}{6}$.

@ 2018 Elsevier B.V. All rights reserved.

DISCRETE OPTIMIZATION

1. Introduction

All graphs considered in this paper are finite, simple, and undirected. Let G be a graph. We let V(G)and E(G) denote the vertex set and the edge set of G, respectively. For a vertex $x \in V(G)$, we let $N_G(x)$, $N_G[x]$ and $d_G(x)$ denote the open neighborhood, the closed neighborhood and the degree of x, respectively; thus $N_G(x) = \{y \in V(G) : xy \in E(G)\}, N_G[x] = N_G(x) \cup \{x\}$ and $d_G(x) = |N_G(x)|$. We let $\delta(G)$ and $\Delta(G)$ denote the minimum degree and the maximum degree of G, respectively. For vertices $x_1, x_2 \in V(G)$, we let $d_G(x_1, x_2)$ denote the distance between x_1 and x_2 in G. For a subset X of V(G), we let G[X] denote the subgraph of G induced by X. We let P_n and C_n denote the path and the cycle of order n, respectively. For a family \mathcal{H} of subgraphs of G, we let $V(\mathcal{H}) := \bigcup_{H \in \mathcal{H}} V(H)$. For terms and symbols not defined in this paper, we refer the reader to [1].

Let k be a positive integer, and let G be a graph. A function $f: V(G) \to 2^{\{1,\dots,k\}}$ is a k-rainbow dominating function (or a k-RDF) of G if every vertex $x \in V(G)$ with $f(x) = \emptyset$ satisfies $\bigcup_{y \in N_G(x)} f(y) = \{1,\dots,k\}$. For

* Corresponding author. E-mail addresses: michitaka.furuya@gmail.com (M. Furuya), mahoyokota2401@gmail.com (M. Yokota).

https://doi.org/10.1016/j.disopt.2018.02.004

1572-5286/© 2018 Elsevier B.V. All rights reserved.

Please cite this article in press as: M. Furuya, et al., Upper bound on 3-rainbow domination in graphs with minimum degree 2, Discrete Optimization (2018), https://doi.org/10.1016/j.disopt.2018.02.004.

$\mathbf{2}$

ARTICLE IN PRESS

M. Furuya et al. / Discrete Optimization 🛚 (

a function $f: V(G) \to 2^{\{1,\dots,k\}}$, the value $w(f) := \sum_{x \in V(G)} |f(x)|$ is called the *weight* of f. The minimum weight of a k-RDF of G is called the k-rainbow domination number of G and is denoted by $\gamma_{rk}(G)$. A k-RDF of G having weight $\gamma_{rk}(G)$ is called a γ_{rk} -function of G. Note that the 1-rainbow domination number of G is equal to the domination number $\gamma(G)$ of G, which is a classical invariant in graph theory.

The concept of rainbow domination was defined by Brešar, Henning and Rall [2] in connection with a special guardman problem. Because of this, the definition of rainbow domination is often regarded as artificial. However, rainbow domination is also a mathematically meaningful concept. The 2-rainbow domination number of graphs has effectively been used in obtaining estimates of invariants concerning domination-like concepts such as domination, total domination and (weak) Roman domination (see [3–7]). Furthermore, k-rainbow domination type theorems related to Vizing's famous conjecture on domination were proved in [8]. Thus there is a hope that the study of rainbow domination will make a contribution to the solution of Vizing's conjecture. For such reasons, the rainbow domination number of graphs has widely been studied.

For a positive integer k and a graph G, the determination problem of the value $\gamma_{rk}(G)$ is NP-complete [9–11]. Thus to find sharp bounds of $\gamma_{rk}(G)$ is an important problem in the theory of rainbow domination. For example, the following results are known.

Theorem A (Ore [12]). Let G be a connected graph of order $n \ge 2$. Then $\gamma_{r1}(G) \le \frac{n}{2}$.

Theorem B (Wu and Rad [13]). Let G be a connected graph of order $n \ge 3$. Then $\gamma_{r2}(G) \le \frac{3n}{4}$.

Theorem C (Fujita et al. [14]). Let G be a connected graph of order $n \ge 5$. Then $\gamma_{r3}(G) \le \frac{8n}{9}$.

The above results are best possible, and Fink et al. [15] and Payan and Xuong [16] independently proved that every connected graph $G \ (\neq C_4)$ of order n with $\gamma_{r1}(G) = \frac{n}{2}$ has endvertices. This suggests that if we make an additional assumption that $\delta(G) \ge 2$, then the bound in Theorem A can be improved. Indeed, the following result is well-known.

Theorem D (McCuaig and Shepherd [17]). Let G be a connected graph of order $n \ge 8$ with $\delta(G) \ge 2$. Then $\gamma_{r1}(G) \le \frac{2n}{5}$.

A sharp upper bound of the 2-rainbow domination number of graphs with minimum degree at least 2 is also known.

Theorem E (Fujita and Furuya [5]). Let G be a connected graph of order n with $\delta(G) \geq 2$. Then $\gamma_{r2}(G) \leq \frac{2n}{3}$.

On the other hand, for an integer $k \ge 4$, we can easily verify that $\gamma_{rk}(C_n) = n$ (see [18]). This means that for $k \ge 4$, the trivial statement that $\gamma_{rk}(G) \le n$ for any (connected) graph G of order n (with $\delta(G) \ge 2$) gives the best possible upper bound. In view of the results mentioned so far, we are naturally led to the problem of obtaining an upper bound of $\gamma_{r3}(G)$ for a connected graph G with $\delta(G) \ge 2$ in terms of its order. Our main purpose in this paper is to give such a bound as follows:

Theorem 1.1. Let G be a connected graph of order $n \ge 8$ with $\delta(G) \ge 2$. Then $\gamma_{r3}(G) \le \frac{5n}{6}$.

The bound in Theorem 1.1 is best possible (see Lemma 4.3(i) in Section 4.2). Indeed, we prove a result stronger than Theorem 1.1. To state our main result, we need some definitions and notations.

Please cite this article in press as: M. Furuya, et al., Upper bound on 3-rainbow domination in graphs with minimum degree 2, Discrete Optimization (2018), https://doi.org/10.1016/j.disopt.2018.02.004.

Download English Version:

https://daneshyari.com/en/article/7543421

Download Persian Version:

https://daneshyari.com/article/7543421

Daneshyari.com