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a b s t r a c t

Let k, n denote two positive integers and consider the family of the polytopes defined
as the convex hull of pairs of the form (Y, h) where Y is a 0/1-matrix with k rows, n
columns, containing exactly one nonzero coefficient per column, and where h stands
for the smallest index of a nonzero row of Y .

These polytopes and some variants naturally emerge in formulations of different
classical combinatorial optimization problems such as minimum makespan schedul-
ing and minimum span frequency assignment.

In this paper, we provide complete formulations for these polytopes and
show the associated separation problem can be solved in polynomial time. The
complete formulations in the original space of variables generally contain an
exponential number of inequalities. Alternative extended compact formulations are
also presented.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Given a set S and two positive integers k, n, let Mk×n(S) denote the set of matrices having k rows, n

columns and all of their entries in the set S. For a matrix Y ∈ Mk×n(S), let yj
i denote its entry in the

ith row and jth column. Given a set S ⊂ Rn, conv(S) stands for the convex hull of S. N∗ stands for the
set of positive integers. For (q, n) ∈ N × N∗ with q < n, [[q, n]] stands for the set of integers from q to n:
[[q, n]] = {q, q + 1, . . . , n}, and for the case when q = 1 we also use [n] to denote [[1, n]].

In this paper, we study the family of polytopes (Pmin
k,n )(k,n)∈(N∗)2 defined as the convex hull of vectors of

the form (Y, h) ∈ Mk×n({0, 1}) × N∗ such that each column of the matrix Y has exactly one nonzero entry,
and the value of h corresponds to the smallest index of a row having at least one nonzero entry. Formally,

* Corresponding author
E-mail addresses: walid.benameur@telecom-sudparis.eu (W. Ben-Ameur), antoine.glorieux@telecom-sudparis.eu (A.

Glorieux), Jose.Neto@telecom-sudparis.eu (J. Neto).

https://doi.org/10.1016/j.disopt.2018.04.002
1572-5286/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.disopt.2018.04.002
http://www.elsevier.com/locate/disopt
http://www.elsevier.com/locate/disopt
mailto:walid.benameur@telecom-sudparis.eu
mailto:antoine.glorieux@telecom-sudparis.eu
mailto:Jose.Neto@telecom-sudparis.eu
https://doi.org/10.1016/j.disopt.2018.04.002


Please cite this article in press as: W. Ben-Ameur, et al., Complete formulations of polytopes related to extensions of assignment matrices,
Discrete Optimization (2018), https://doi.org/10.1016/j.disopt.2018.04.002.

2 W. Ben-Ameur et al. / Discrete Optimization ( ) –

Pmin
k,n = conv

⎛⎜⎜⎜⎜⎝
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩(Y, h) ∈ Mk×n({0, 1}) × N∗

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

k∑
l=1

yi
l = 1, ∀i ∈ [n],

h = min
i∈[n]

k∑
l=1

lyi
l

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⎞⎟⎟⎟⎟⎠ .

We define in the same manner the family of polytopes (Pmax
k,n )(k,n)∈(N∗)2 replacing “min” with “max” in the

definition above. Polytopes such as Pmin
k,n or Pmax

k,n naturally arise in combinatorial optimization problems
involving n variables (zi)n

i=1 each of which can be assigned an integer number in [k]. Then each variable yj
i

has the following interpretation: yj
i = 1 if and only if zj = i. And for the case of Pmin

k,n (resp. Pmax
k,n ), the value

of the variable h is the smallest (resp. largest) value assigned to the variables (zi)n
i=1. Next, we mention

some related works which motivated our investigations, namely combinatorial optimization problems where
these polytopes naturally emerge.

Motivation and related work
Given a set J of n jobs, a set M of m machines that can all process at most one job at a time, and

the time ti,j for processing job j ∈ J on machine i ∈ M , the goal of the minimum makespan scheduling
problem is to assign a machine i ∈ M for each job j ∈ J so as to minimize the makespan, i.e. the maximum
processing time of any machine (see e.g., [1]). Several approximation schemes have been developed to deal
with this N P-hard problem [2], e.g. [3] and [4]. The timeline is discretized into units of time (e.g., days)
and the processing times are integers. Consider the variant where all the machines are identical [5] and the
interruption of a task being processed is not allowed. So, in this case, for any job j ∈ J , ti,j = tj , ∀i ∈ M

and assigning a machine to each job reduces to assigning a day to be the last day of processing this job,
which also determines the first day of the processing. We can then formulate the problem as follows. We take
k =

∑n
j=1tj and the variable X ∈ Mk×n({0, 1}) whose interpretation is: xj

l = 1 if and only if the processing
of the job j ends on the day l. We obtain the following formulation.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min g

s.t.
∑k

l=1
lxj

l ≥ tj , ∀j ∈ [n],∑n

j=1

∑min(l+tj−1,k)

l′=l
xj

l′ ≤ m, ∀l ∈ [k],

(X, g) ∈ Pmax
k,n , X ∈ Mk×n({0, 1}).

The first constraints ensure that for each job j ∈ [n] its processing ends after enough time, while the second
set of constraints ensure that no more than m jobs are processed daily. This formulation may be altered to
consider additional constraints (such as precedence or release time) and any linear objective function.

The minimum-span frequency-assignment problem is a variant of the N P-hard frequency-assignment
problem [6]. The input is a graph G = (V, E) called the interference graph, with V = {v1, . . . , vn} and
ij ∈ E iff the signals at the nodes (representing antennas) i and j can interfere. A frequency f from a set
F of available frequencies (integer values) must be assigned to each node v ∈ V , in such a way that, for
each edge e ∈ E, both endpoints are assigned with different frequencies. In addition, to reduce interferences,
stronger requirements may be imposed: |f(u) − f(v)| ≥ suv, ∀uv ∈ E, where f(u) (resp. f(v)) stands for
the frequency assigned to u (resp. v), and suv is a given threshold value. The problem consists of assigning
frequencies to nodes taking into account the separation requirements and such that the difference between
the maximum and minimum assigned numbers is minimized (see, e.g., [7]). With F = [k] where k is an
upper bound on the minimum span and using boolean variables xi

l taking value 1 iff frequency l is assigned
to node vi, the problem can be formulated as follows.⎧⎪⎨⎪⎩

min g

s.t. xi
l + xj

l′ ≤ 1, ∀(i, j, l, l′) ∈ [n]2 × [k]2 such that vivj ∈ E, |l − l′| < svivj
,

(X, g) ∈ Pmax
k,n , X ∈ Mk×n({0, 1}).
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