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a b s t r a c t

A Hamiltonian path of a graph is a simple path which visits each vertex of
the graph exactly once. The Hamiltonian path problem is to determine whether
a graph contains a Hamiltonian path. A graph is called Hamiltonian connected
if there exists a Hamiltonian path between any two distinct vertices. In this
paper, we will study the Hamiltonian connectivity of rectangular supergrid graphs.
Supergrid graphs were first introduced by us and include grid graphs and triangular
grid graphs as subgraphs. The Hamiltonian path problem for grid graphs and
triangular grid graphs was known to be NP-complete. Recently, we have proved
that the Hamiltonian path problem for supergrid graphs is also NP-complete.
The Hamiltonian paths on supergrid graphs can be applied to compute the
stitching traces of computer sewing machines. Rectangular supergrid graphs form
a popular subclass of supergrid graphs, and they have strong structure. In this
paper, we provide a constructive proof to show that rectangular supergrid graphs
are Hamiltonian connected except one trivial forbidden condition. Based on the
constructive proof, we present a linear-time algorithm to construct a longest path
between any two given vertices in a rectangular supergrid graph.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A Hamiltonian path in a graph is a simple path in which each vertex of the graph appears exactly
once. A Hamiltonian cycle in a graph is a simple cycle with the same property. The Hamiltonian path
(resp., cycle) problem involves deciding whether or not a graph contains a Hamiltonian path (resp., cycle).
A graph is called Hamiltonian if it contains a Hamiltonian cycle. A graph G is said to be Hamiltonian
connected if for each pair of distinct vertices u and v of G, there is a Hamiltonian path from u to v in G. If
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(u, v) is an edge of a Hamiltonian connected graph, then there exists a Hamiltonian cycle containing (u, v).
Thus, a Hamiltonian connected graph has many Hamiltonian cycles, and, hence, the sufficient conditions
of Hamiltonian connectivity are stronger than those of Hamiltonicity. The longest path problem is to find a
simple path with the maximum number of vertices in a graph. The Hamiltonian path problem is clearly a
special case of the longest path problem.

The Hamiltonian path and cycle problems have numerous applications in different areas, including
establishing transport routes, production launching, the on-line optimization of flexible manufacturing
systems [1], computing the perceptual boundaries of dot patterns [2], pattern recognition [3–5], DNA physical
mapping [6], and fault-tolerant routing for 3D network-on-chip architectures [7]. It is well known that the
Hamiltonian path and cycle problems are NP-complete for general graphs [8,9]. The same holds true for
bipartite graphs [10], split graphs [11], circle graphs [12], undirected path graphs [13], grid graphs [14],
triangular grid graphs [15], and supergrid graphs [16]. In the literature, there are many studies for the
Hamiltonian connectivity of interconnection networks. Fu [17] showed the Hamiltonian connectivity of the
WK-recursive network with faulty nodes. Li et al. [18] proved the Hamiltonian connectivity of the recursive
dual-net. The hypercomplete network [19], the alternating group graph [20], and the arrangement graph [21]
were known to be Hamiltonian connected. The popular hypercubes are Hamiltonian but are not Hamiltonian
connected. However, many variants of hypercubes, including augmented hypercubes [22], generalized base-b
hypercube [23], hyercube-like networks [24], twisted cubes [25], crossed cubes [26], Möbius cubes [27], folded
hypercubes [28], and enhanced hypercubes [29], have been known to be Hamiltonian connected. In addition,
only a few polynomial-time algorithms are known for the longest path problem on special graphs. Trees are
the first class of graphs that a polynomial-time algorithm for the longest path problem has been found [30].
Uehara and Uno [31] solved the longest path problem for block graphs in linear time, for cacti in quadratic
time, and for interval biconvex graphs in polynomial time. Ioannidou et al. [32] showed that the longest
path problem on interval graphs is polynomially solvable. Mertzios and Corneil [33] solved the problem
in polynomial time for a larger class of graphs, named cocomparability graphs. More recently, Mertzios
and Bezáková [34] solved the problem on circular-arc graphs in polynomial time. Also, there is a linear-time
algorithm for the longest path problem on rectangular grid graphs proposed by Keshavarz-Kohjerdi et al. [35].

The two-dimensional integer grid G∞ is an infinite graph whose vertex set consists of all points of the
Euclidean plane with integer coordinates and in which two vertices are adjacent if the (Euclidean) distance
between them is equal to 1. A grid graph is a finite, vertex-induced subgraph of G∞. For a node v in the plane
with integer coordinates, let vx and vy represent the x and y coordinates of node v, respectively, denoted by
v = (vx, vy). If v is a vertex in a grid graph, then its possible adjacent vertices include (vx, vy −1), (vx−1, vy),
(vx + 1, vy), and (vx, vy + 1). The two-dimensional triangular grid T ∞ is an infinite graph obtained from
G∞ by adding all edges on the lines traced from up-left to down-right. A triangular grid graph is a finite,
vertex-induced subgraph of T ∞. If v is a vertex in a triangular grid graph, then its possible neighboring
vertices include (vx, vy − 1), (vx − 1, vy), (vx + 1, vy), (vx, vy + 1), (vx − 1, vy − 1), and (vx + 1, vy + 1). Thus,
triangular grid graphs contain grid graphs as subgraphs. Note that triangular grid graphs defined above are
isomorphic to the original triangular grid graphs studied in the literature [15] but these graphs are different
when considered as geometric graphs. By the same construction of triangular grid graphs from grid graphs,
we have proposed a new class of graphs, namely supergrid graphs, in [16]. The two-dimensional supergrid
S∞ is an infinite graph obtained from T ∞ by adding all edges on the lines traced from up-right to down-left.
A supergrid graph is a finite, vertex-induced subgraph of S∞. The possible adjacent vertices of a vertex
v = (vx, vy) in a supergrid graph include (vx, vy − 1), (vx − 1, vy), (vx + 1, vy), (vx, vy + 1), (vx − 1, vy − 1),
(vx +1, vy +1), (vx +1, vy −1), and (vx −1, vy +1). For example, Fig. 1(a)–(c) show a grid graph, a triangular
grid graph, and a supergrid graph, respectively. Then, supergrid graphs contain grid graphs and triangular
grid graphs as subgraphs. Notice that grid and triangular grid graphs are not subclasses of supergrid graphs,
and the converse is also true: these classes of graphs have common elements (vertices) but in general they
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