ARTICLE IN PRESS

Discrete Optimization (())

Contents lists available at ScienceDirect

Discrete Optimization

www.elsevier.com/locate/disopt

Anchored rectangle and square packings[★],★★

Kevin Balas^{a,b}, Adrian Dumitrescu^{c,*}, Csaba D. Tóth^{b,d}

- ^a Department of Mathematics, California State University Northridge, Los Angeles, CA, USA
- ^b Mathematics Department, Moorpark College, Moorpark, CA, USA
- ^c Department of Computer Science, University of Wisconsin-Milwaukee, WI, USA
- d Department of Computer Science, Tufts University, Medford, MA, USA

ARTICLE INFO

Article history: Received 5 August 2016 Received in revised form 13 August 2017 Accepted 21 August 2017 Available online xxxx

Keywords: Rectangle packing Anchored rectangle Greedy algorithm Charging scheme Approximation algorithm

ABSTRACT

For points p_1, \ldots, p_n in the unit square $[0,1]^2$, an anchored rectangle packing consists of interior-disjoint axis-aligned empty rectangles $r_1, \ldots, r_n \subseteq [0,1]^2$ such that point p_i is a corner of the rectangle r_i (that is, r_i is anchored at p_i) for $i=1,\ldots,n$. We show that for every set of n points in $[0,1]^2$, there is an anchored rectangle packing of area at least 7/12 - O(1/n), and for every $n \in \mathbb{N}$, there are point sets for which the area of every anchored rectangle packing is at most 2/3. The maximum area of an anchored square packing is always at least 5/32 and sometimes at most 7/27.

The above constructive lower bounds immediately yield constant-factor approximations, of $7/12-\varepsilon$ for rectangles and 5/32 for squares, for computing anchored packings of maximum area in $O(n\log n)$ time. We prove that a simple greedy strategy achieves a 9/47-approximation for anchored square packings, and 1/3 for lower-left anchored square packings. Reductions to maximum weight independent set (MWIS) yield a QPTAS for anchored rectangle packings in $\exp(\operatorname{poly}(\varepsilon^{-1}\log n))$ time and a PTAS for anchored square packings in $n^{O(1/\varepsilon)}$ time.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let $P = \{p_1, \ldots, p_n\}$ be a finite set of points in an axis-aligned bounding rectangle U. An anchored rectangle packing for P is a set of axis-aligned empty rectangles r_1, \ldots, r_n that lie in U, are interior-disjoint, and p_i is one of the four corners of r_i for $i = 1, \ldots, n$ (a rectangle is empty if it does not contain any point from P in its interior); rectangle r_i is said to be anchored at p_i .

For a given point set $P \subset U$, we wish to find the maximum total area A(P) of an anchored rectangle packing of P. Since the ratio between areas is an affine invariant, we may assume that $U = [0, 1]^2$. However,

E-mail addresses: kbalas@vcccd.edu (K. Balas), dumitres@uwm.edu (A. Dumitrescu), cdtoth@acm.org (C.D. Tóth).

 $\begin{array}{l} \text{http://dx.doi.org/10.1016/j.disopt.2017.08.003} \\ 1572\text{-}5286/@\ 2017\ Elsevier\ B.V.\ All\ rights\ reserved. \end{array}$

 $^{^{\}circ}$ An extended abstract of this paper appeared in the Proceedings of the 32nd International Symposium on Computational Geometry, June 2016, Leibniz International Proceedings in Informatics (LIPIcs) series, Schloss Dagstuhl; http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.13.

 $^{^{\}star\star}$ This work was partially supported by the NSF awards CCF-1422311 and CCF-1423615.

^{*} Corresponding author.

Fig. 1. For $P = \{p_1, p_2\}$, with $p_1 = (\frac{1}{4}, \frac{3}{4})$ and $p_2 = (\frac{3}{8}, \frac{7}{8})$, a greedy algorithm selects rectangles of area $\frac{3}{4} \cdot \frac{3}{4} + \frac{1}{8} \cdot \frac{5}{8} = \frac{41}{64}$ (left), which is less than the area $\frac{1}{4} \cdot \frac{3}{4} + \frac{5}{8} \cdot \frac{7}{8} = \frac{47}{64}$ of the packing on the right.

Table 1
Table of results for the four variants studied in this paper. The last two columns refer to lower-left anchored rectangles and lower-left anchored squares, respectively.

Anchored packing with	rectangles	squares	LL-rect.	LL-sq.
Guaranteed max. area	$\frac{7}{12} - O(\frac{1}{n}) \le A(n) \le \frac{2}{3}$	$\frac{5}{32} \le A_{\mathrm{sq}}(n) \le \frac{7}{27}$	0	0
Greedy approx. ratio	$7/12 - \varepsilon$	9/47	0.091 [2]	1/3
Approximation scheme	QPTAS	PTAS	QPTAS	PTAS

if we are interested in the maximum area of an anchored square packing, we must assume that $U = [0, 1]^2$ (or that the aspect ratio of U is bounded from below by a constant; otherwise, with an arbitrary rectangle U, the guaranteed area is only zero).

Finding the maximum area of an anchored rectangle packing of n given points is suspected but not known to be NP-hard. Balas and Tóth [1] showed that the number of distinct rectangle packings that attain the maximum area, A(P), can be exponential in n. From the opposite direction, the same authors [1] proved an exponential upper bound on the number of maximum area configurations, namely $2^n C_n = \Theta(8^n/n^{3/2})$, where $C_n = \frac{1}{n+1} \binom{2n}{n} = \Theta(4^n/n^{3/2})$ is the nth Catalan number. Note that a greedy strategy may fail to find A(P); see Fig. 1.

Variants and generalizations. We consider three additional variants of the problem. An anchored square packing is an anchored rectangle packing in which all rectangles are squares; a lower-left anchored rectangle packing is a rectangle packing where each point $p_i \in r_i$ is the lower-left corner of r_i ; and a lower-left anchored square packing has both properties. We suspect that all variants, with rectangles or with squares, are NP-hard. Here, we put forward several approximation algorithms, while it is understood that the news regarding NP-hardness can occur at any time or perhaps take some time to establish.

The problem can be generalized to other geometric shapes with distinct representatives. Let $P = \{p_1, \ldots, p_n\}$ be a finite set of points in a compact domain $U \subset \mathbb{R}^d$, and let $\mathcal{F} = \{\mathcal{F}_1, \ldots, \mathcal{F}_n\}$ be n families of measurable sets (e.g., rectangles, squares, or disks) such that for all $r \in \mathcal{F}_i$, we have $p_i \in r \subseteq U$ and $\mu(r) \geq 0$ is the measure of r. An anchored packing for (P, \mathcal{F}) is a set of pairwise interior-disjoint representatives r_1, \ldots, r_n with $r_i \in \mathcal{F}_i$ for $i = 1, \ldots, n$. We wish to find an anchored packing for (P, \mathcal{F}) of maximum measure $\sum_{i=1}^n \mu(r_i)$. While some variants are trivial (e.g., when $U = [0, 1]^2$ and \mathcal{F}_i consists of all rectangles containing p_i), there are many interesting and challenging variants (e.g., when \mathcal{F}_i consists of disks containing p_i ; or when U is nonconvex). In this paper we assume that the domain U and the families \mathcal{F} are axis-aligned rectangles or axis-aligned squares in the plane.

Contributions. Our results are summarized in Table 1.

- (i) We first deduce upper and lower bounds on the maximum area of an anchored rectangle packing of n points in $[0,1]^2$. For $n \in \mathbb{N}$, let $A(n) = \inf_{|P|=n} A(P)$. We prove that $\frac{7}{12} O(1/n) \le A(n) \le \frac{2}{3}$ for all $n \in \mathbb{N}$ (Sections 2 and 3).
- (ii) Let $A_{sq}(P)$ be the maximum area of an anchored square packing for a point set P, and $A_{sq}(n) = \inf_{|P|=n} A_{sq}(P)$. We prove that $\frac{5}{32} \le A_{sq}(n) \le \frac{7}{27}$ for all n (Sections 2 and 4).

Download English Version:

https://daneshyari.com/en/article/7543489

Download Persian Version:

https://daneshyari.com/article/7543489

<u>Daneshyari.com</u>