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a b s t r a c t

For points p1, . . . , pn in the unit square [0, 1]2, an anchored rectangle packing
consists of interior-disjoint axis-aligned empty rectangles r1, . . . , rn ⊆ [0, 1]2 such
that point pi is a corner of the rectangle ri (that is, ri is anchored at pi) for
i = 1, . . . , n. We show that for every set of n points in [0, 1]2, there is an anchored
rectangle packing of area at least 7/12 − O(1/n), and for every n ∈ N, there are
point sets for which the area of every anchored rectangle packing is at most 2/3. The
maximum area of an anchored square packing is always at least 5/32 and sometimes
at most 7/27.

The above constructive lower bounds immediately yield constant-factor approx-
imations, of 7/12 − ε for rectangles and 5/32 for squares, for computing anchored
packings of maximum area in O(n log n) time. We prove that a simple greedy
strategy achieves a 9/47-approximation for anchored square packings, and 1/3 for
lower-left anchored square packings. Reductions to maximum weight independent
set (MWIS) yield a QPTAS for anchored rectangle packings in exp(poly(ε−1 log n))
time and a PTAS for anchored square packings in nO(1/ε) time.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let P = {p1, . . . , pn} be a finite set of points in an axis-aligned bounding rectangle U . An anchored
rectangle packing for P is a set of axis-aligned empty rectangles r1, . . . , rn that lie in U , are interior-disjoint,
and pi is one of the four corners of ri for i = 1, . . . , n (a rectangle is empty if it does not contain any point
from P in its interior); rectangle ri is said to be anchored at pi.

For a given point set P ⊂ U , we wish to find the maximum total area A(P ) of an anchored rectangle
packing of P . Since the ratio between areas is an affine invariant, we may assume that U = [0, 1]2. However,
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Fig. 1. For P = {p1, p2}, with p1 = ( 1
4 , 3

4 ) and p2 = ( 3
8 , 7

8 ), a greedy algorithm selects rectangles of area 3
4 · 3

4 + 1
8 · 5

8 = 41
64 (left),

which is less than the area 1
4 · 3

4 + 5
8 · 7

8 = 47
64 of the packing on the right.

Table 1
Table of results for the four variants studied in this paper. The last two columns refer to lower-left anchored rectangles and lower-left
anchored squares, respectively.

Anchored packing with rectangles squares LL-rect. LL-sq.

Guaranteed max. area 7
12 − O( 1

n ) ≤ A(n) ≤ 2
3

5
32 ≤ Asq(n) ≤ 7

27 0 0
Greedy approx. ratio 7/12 − ε 9/47 0.091 [2] 1/3
Approximation scheme QPTAS PTAS QPTAS PTAS

if we are interested in the maximum area of an anchored square packing, we must assume that U = [0, 1]2

(or that the aspect ratio of U is bounded from below by a constant; otherwise, with an arbitrary rectangle
U , the guaranteed area is only zero).

Finding the maximum area of an anchored rectangle packing of n given points is suspected but not known
to be NP-hard. Balas and Tóth [1] showed that the number of distinct rectangle packings that attain the
maximum area, A(P ), can be exponential in n. From the opposite direction, the same authors [1] proved
an exponential upper bound on the number of maximum area configurations, namely 2nCn = Θ(8n/n3/2),
where Cn = 1

n+1
( 2n

n

)
= Θ(4n/n3/2) is the nth Catalan number. Note that a greedy strategy may fail to

find A(P ); see Fig. 1.

Variants and generalizations. We consider three additional variants of the problem. An anchored square
packing is an anchored rectangle packing in which all rectangles are squares; a lower-left anchored rectangle
packing is a rectangle packing where each point pi ∈ ri is the lower-left corner of ri; and a lower-left
anchored square packing has both properties. We suspect that all variants, with rectangles or with squares,
are NP-hard. Here, we put forward several approximation algorithms, while it is understood that the news
regarding NP-hardness can occur at any time or perhaps take some time to establish.

The problem can be generalized to other geometric shapes with distinct representatives. Let P =
{p1, . . . , pn} be a finite set of points in a compact domain U ⊂ Rd, and let F = {F1, . . . ,Fn} be n families of
measurable sets (e.g., rectangles, squares, or disks) such that for all r ∈ Fi, we have pi ∈ r ⊆ U and µ(r) ≥ 0
is the measure of r. An anchored packing for (P,F) is a set of pairwise interior-disjoint representatives
r1, . . . , rn with ri ∈ Fi for i = 1, . . . , n. We wish to find an anchored packing for (P,F) of maximum
measure

∑n
i=1µ(ri). While some variants are trivial (e.g., when U = [0, 1]2 and Fi consists of all rectangles

containing pi), there are many interesting and challenging variants (e.g., when Fi consists of disks containing
pi; or when U is nonconvex). In this paper we assume that the domain U and the families F are axis-aligned
rectangles or axis-aligned squares in the plane.
Contributions. Our results are summarized in Table 1.

(i) We first deduce upper and lower bounds on the maximum area of an anchored rectangle packing of n

points in [0, 1]2. For n ∈ N, let A(n) = inf |P |=nA(P ). We prove that 7
12 −O(1/n) ≤ A(n) ≤ 2

3 for all n ∈ N
(Sections 2 and 3).

(ii) Let Asq(P ) be the maximum area of an anchored square packing for a point set P , and Asq(n) =
inf |P |=nAsq(P ). We prove that 5

32 ≤ Asq(n) ≤ 7
27 for all n (Sections 2 and 4).
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