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a b s t r a c t

In the Stable Marriage and Roommates problems, a set of agents is given, each of
them having a strictly ordered preference list over some or all of the other agents. A
matching is a set of disjoint pairs of mutually acceptable agents. If any two agents
mutually prefer each other to their partner, then they block the matching, otherwise,
the matching is said to be stable. We investigate the complexity of finding a solution
satisfying additional constraints on restricted pairs of agents. Restricted pairs can
be either forced or forbidden. A stable solution must contain all of the forced pairs,
while it must contain none of the forbidden pairs.

Dias et al. (2003) gave a polynomial-time algorithm to decide whether such a
solution exists in the presence of restricted edges. If the answer is no, one might
look for a solution close to optimal. Since optimality in this context means that the
matching is stable and satisfies all constraints on restricted pairs, there are two ways
of relaxing the constraints by permitting a solution to: (1) be blocked by as few as
possible pairs, or (2) violate as few as possible constraints n restricted pairs.

Our main theorems prove that for the (bipartite) Stable Marriage problem, case
(1) leads to NP-hardness and inapproximability results, whilst case (2) can be solved
in polynomial time. For non-bipartite Stable Roommates instances, case (2) yields
an NP-hard but (under some cardinality assumptions) 2-approximable problem. In
the case of NP-hard problems, we also discuss polynomially solvable special cases,
arising from restrictions on the lengths of the preference lists, or upper bounds on
the numbers of restricted pairs.
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1. Introduction

In the classical Stable Marriage problem (sm) [1], a bipartite graph is given, where one colour class
symbolises a set of men U and the other colour class stands for a set of women W . Man u and woman w
are connected by edge uw if they find one another mutually acceptable. Each participant provides a strictly
ordered preference list of the acceptable agents of the opposite gender. An edge uw blocks matching M if it
is not inM , but each of u and w is either unmatched or prefers the other to their partner. A stable matching
is a matching not blocked by any edge. From the seminal paper of Gale and Shapley [1], we know that the
existence of such a stable solution is guaranteed and one can be found in linear time. Moreover, the solutions
form a distributive lattice [2]. The two extreme points of this lattice are called the man- and woman-optimal
stable matchings [1]. These assign each man/woman their best partner reachable in any stable matching.
Another interesting and useful property of stable solutions is the so-called Rural Hospitals Theorem. Part
of this theorem states that if an agent is unmatched in one stable matching, then all stable solutions leave
him unmatched [3].

One of the most widely studied extensions of sm is the Stable Roommates problem (sr) [1,4], defined
on general graphs instead of bipartite graphs. The notion of a blocking edge is as defined above (except
that it can now involve any two agents in general), but several results do not carry over to this setting.
For instance, the existence of a stable solution is not guaranteed any more. On the other hand, there is a
linear-time algorithm to find a stable matching or report that none exists [4]. Moreover, the corresponding
variant of the Rural Hospitals Theorem holds in the roommates case as well: the set of matched agents is
the same for all stable solutions [5]. We summarise this observation as follows:

Theorem 1.1 (Gusfield and Irving [5]). Given an instance of sr, the same set of agents is matched in all
stable matchings.

Both sm and sr are widely used in various applications. In markets where the goal is to maximise social
welfare instead of profit, the notion of stability is especially suitable as an optimality criterion [6]. For sm, the
oldest and most common area of applications is employer allocation markets [7]. On one side, job applicants
are represented, while the job openings form the other side. Each application corresponds to an edge in the
bipartite graph. The employers rank all applicants to a specific job offer and similarly, each applicant sets up
a preference list of jobs. Given a proposed matching M of applicants to jobs, if an employer–applicant pair
exists such that the position is not filled or a worse applicant is assigned to it, and the applicant received no
contract or a worse contract, then this pair blocksM . In this case the employer and applicant find it mutually
beneficial to enter into a contract outside of M , undermining its integrity. If no such blocking pair exists,
then M is stable. Stability as an underlying concept is also used to allocate graduating medical students to
hospitals in many countries [8]. sr on the other hand has applications in the area of P2P networks [9].

Forced and forbidden edges in sm and sr open the way to formulate various special requirements on
the sought solution. Such edges now form part of the extended problem instance: if an edge is forced, it
must belong to a constructed stable matching, whilst if an edge is forbidden, it must not. In certain market
situations, a contract is for some reason particularly important, or to the contrary, not wished by the majority
of the community or by the central authority in control. In such cases, forcing or forbidding the edge and
then seeking a stable solution ensures that the wishes on these specific contracts are fulfilled while stability
is guaranteed. Henceforth, the term restricted edge will be used to refer either to a forbidden edge or a forced
edge. The remaining edges of the graph are referred as unrestricted edges.

Note that simply deleting forbidden edges or fixing forced edges and searching for a stable matching on
the remaining instance does not solve the problem of finding a stable matching with restricted edges. Deleted
edges (corresponding to forbidden edges, or those adjacent to forced edges) can block that matching. There-
fore, to meet both requirements on restricted edges and stability, more sophisticated methods are needed.
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