
Broadband planar nearfield acoustic holography based
on one-third-octave band analysis

Hefeng Zhou a,⇑, Ines Lopez-Arteaga a,b, Henk Nijmeijer a

aDepartment of Mechanical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
bDepartment of Aeronautical and Vehicle Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden

a r t i c l e i n f o

Article history:
Received 12 April 2015
Received in revised form 3 December 2015
Accepted 22 February 2016

Keywords:
Nearfield acoustic holography
Narrow-band
Frequency analysis
One-third-octave band

a b s t r a c t

Planar nearfield acoustic holography (PNAH) is usually based on narrow-band, single frequency analysis,
which is time consuming when the source behavior over a broad frequency range is of interest, as is the
case with many industrial sources. In this paper a method, broadband planar nearfield acoustic hologra-
phy based on one-third-octave band analysis (BPNAH), is described. Data relating to the complex band
pressure on the hologram is obtained by combining the root-mean-square pressure corresponding to a
one-third-octave band with the phase of the pressure corresponding to a single frequency line.
Numerical simulations and measurements show that the BPNAH method allows a significant reduction
in processing time, while keeping a similar accuracy to the conventional reconstruction, which is based
on the summation of frequency by frequency in the corresponding band. As a simple, time-saving and
robust technique, the BPNAH method is particularly well adapted to industrial studies.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Nearfield acoustic holography (NAH) was first proposed by
Williams and Maynard [1,2] in the mid-1980s. Its major attraction
is its solution to the inverse problem that traces the sound field in
space and time back towards sources. More specifically, with the
introduction of evanescent waves detected in the nearfield
together with propagating waves, not only source details greater
but also those smaller than the sound wavelength can be retrieved.
Although during the past decade, NAH has developed in a variety of
directions [3–14], Fourier-based NAH still finds a wide range of
applications for its efficient computation ability, which makes it
possible for the sound field to be decomposed into wave-number
components, providing physically meaningful information.

As a powerful and fast acoustic imaging technique, Fourier-
based planar nearfield acoustic holography (PNAH) reconstructs
the surface sound field of plane radiators from a measurement of
the pressure on a parallel plane at a small distance from the plane
[15]. Until now, research on PNAH has been focused on the recon-
struction of single frequency components. However, in more prac-
tical situations such as manufacturing, most sound and vibration
signals are complex broadband signals. On the one hand, it is diffi-
cult to identify a representative frequency line. Therefore it is

incomplete to select a frequency at random and analyze it. On
the other hand, it will be time-consuming to study frequency by
frequency in this case. Although a great deal of effort [16,17] has
been dedicated to solving these problems, an efficient nearfield
method working in the frequency domain has yet to be developed.

For frequency analysis in engineering applications, a scale of
1/3-octave bands is widely used [18]. Specifically, the whole
frequency range is divided into a set of frequencies called
1/3-octave bands. Each band covers a specific range of frequencies
and all frequency components in one band are represented by the
same parameter. The energy distribution of a broadband sound sig-
nal can be expressed very well in this way. In addition, a 1/3-octave
band is close to the human ear’s logarithmic sensitivity to sounds
of different frequencies.

To benefit from these advantages, attempts have been made to
use this analytical tool to simplify the conventional approach,
which requires the inversion of many frequency components to
reconstruct a source signal in a given 1/3-octave band. A new
method-broadband planar nearfield acoustic holography based
on 1/3-octave band analysis (BPNAH)-is proposed. This method
solves the inverse problem through a single reconstruction, and
as a simple, time-saving and robust technique with little accuracy
loss, it is particularly suitable for studying industrial sources.

This paper is organized as follows: In the next section, the
principle of Fourier-based PNAH is illustrated briefly and then
the derivation of our proposed BPNAH method, especially the
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determination of an appropriate phase, is introduced. Numerical
simulations are performed in Section 3 and some practical source
experiments are carried out for further validation in Section 4,
where a large number of results are shown and discussed. Finally,
conclusions are drawn in Section 5.

2. Theory

2.1. Fourier-based PNAH

Consider an infinite plane at z ¼ zS with a number of sources in it.
In a plane at z ¼ zH > zS parallel to the source plane, named the holo-
gram plane, the complex sound pressure is observed as a function of
x and y and a two-dimensional spatial Fourier transform is calcu-
lated. The result is a wavenumber spectrum, which is defined as

Pðkx; ky; zH; f Þ ¼
Z 1

�1

Z 1

�1
pðx; y; zH; f Þe�jðkxxþkyyÞdxdy; ð1Þ

where pðx; y; zH; f Þ is the sound pressure evaluated on the hologram

plane corresponding to a frequency f ; j2 ¼ �1 is the imaginary num-
ber, Pðkx; ky; zH; f Þ, which stands for its angular spectra, and kx and ky
represent wavenumbers of the acoustic waves in the x- and y-axis
directions, respectively.

The key issue in PNAH is how to transform acoustic quantities
from the measurement surface to a parallel surface in a source-
free region [19]. This special capability is represented in the follow-
ing formulation:

Pðkx; ky; zS; f Þ ¼ Pðkx; ky; zH; f ÞG�1
pp ðkx; ky; zS � zH; f Þ; ð2Þ

where G�1
pp ðkx; ky; zS � zH; f Þ ¼ ejkzðzS�zHÞ is known as the propagator

for reconstructing the sound pressure. Then pðx; y; zS; f Þ is given by
the inverse two-dimensional Fourier transform,

pðx; y; zS; f Þ ¼ 1
4p2

Z 1

�1

Z 1

�1
Pðkx; ky; zS; f ÞejðkxxþkyyÞdkxdky; ð3Þ

For a given acoustic wavenumber k ¼ 2pf=c ¼ x=c, two regions
can be distinguished according to the complex values of kz, where

kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � ðk2x þ k2yÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2r

q
. When kr 6 k; kz is real. For any

given value of ðkx; kyÞ inside the so-called radiation circle that lies
at kr ¼ k, a plane wave propagates in the ðkx; ky; kzÞ direction with
only a phase shift. On the other hand, when kr > k; kz is imaginary.
Outside the radiation circle the wavenumber spectrum represents
that the amplitude of the sound pressure decays exponentially
with distance, known as an evanescent wave.

If the normal velocity on the source plane vðx; y; zS; f Þ is sought,
then the mathematics behind PNAH is summarized in the single
statement:

vðx;y;zS; f Þ¼F�1
x F�1

y fF xF y½pðx;y;zH; f Þ�G�1
pv ðkx;ky;zS�zH; f Þg; ð4Þ

where F represents the Fourier transform operation and the veloc-
ity propagator G�1

pv ðkx; ky; zS � zH; f Þ ¼ ðkz=q0ckÞejkzðzS�zHÞ.

2.2. Principle of BPNAH

Let rS ¼ ðx; y; zSÞ and rH ¼ ðx; y; zHÞ be the position vectors of a
point on the source and hologram plane, respectively. The root-
mean-square (RMS) normal velocity on the source plane in a
1/3-octave band is defined as

vBðrSÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
I

XI

i¼1
jvðrS; f iÞj2

r
; ð5Þ

where the 1/3-octave band is divided into I sub-bands and f i stands
for the central frequency of the ith sub-band. Accordingly, the
1/3-octave band RMS pressure on the hologram plane is given by

pBðrHÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
I

XI

i¼1
jpðrH; f iÞj2

r
; ð6Þ

It is customary to refer to 1/3-octave band level when the mea-
surement band is 1/3-octave wide. Thus we have the 1/3-octave
band level of the normal velocity on the source plane

LvðrSÞ ¼ 10log10

PI
i¼1jvðrS; f iÞj2

v2
ref

; ð7Þ

where v ref ¼ 5� 10�8 m/s, and the 1/3-octave band level of the
pressure on the source plane

LpðrSÞ ¼ 10log10

PI
i¼1jpðrS; f iÞj2

p2
ref

; ð8Þ

where pref ¼ 2� 10�5 Pa.
According to conventional PNAH, when people are interested in

the source behavior over a broad frequency range, e.g., Lv ðrSÞ, the
complex hologram pressure at each frequency in the band has to
be measured. Then the corresponding source normal velocity is
reconstructed, summed together to obtain Lv ðrSÞ.

It is time-consuming to measure and reconstruct frequency by
frequency, especially for high frequency bands. In addition, plenty
of unnecessary information will be produced and has to be aban-
doned eventually. Therefore, the feasibility to obtain Lv ðrSÞ, that
is, reconstructing vBðrSÞ essentially, through a single reconstruc-
tion, gradually becomes a problem worthy of consideration.

One has to notice that a complex pressure spectrum (amplitude
and phase) is required in Eq. (4) in order to reconstruct the veloc-
ity. Consider that pBðrHÞ can be provided and serve as amplitude.
By expressing the complex pressure in the form p ¼ jpjej/, we get
the complex 1/3-octave band RMS pressure on the hologram plane

pBðrH; f iÞ ¼ pBðrHÞej/ðrH ;f iÞ; ð9Þ
where /ðrH; f iÞ is the phase of the hologram pressure corresponding
to a certain f i in the 1/3-octave band.

Next, as stated in Eq. (4), by following the general process of
PNAH at f i we have:

~vBðrSÞ ¼ jF�1
x F�1

y fF xF y½pBðrH; f iÞ�G�1
pv ðkx; ky; zS � zH; f iÞgj: ð10Þ

With pBðrHÞ provided, the key to the success of BPNAH, which
requires that ~vBðrSÞ approximates vBðrSÞ over the total source
plane, is a desirable selection of /ðrH; f iÞ.

2.3. Determination of the phase

In order to simplify our approach, let us start by investigating a
single point source located at rS1 ¼ ðx1; y1; zSÞ. The relationship
between amplitudes of normal velocities on the source plane cor-
responding to two frequencies in the same band, vðrS1; f iÞ and
vðrS1; f qÞ, is jvðrS1; f iÞj ¼ mi;q � jvðrS1; f qÞj.

According to Rayleigh’s first integral, we have

pðrH; f iÞ ¼
�jqcki
2p

Z
S
vðrS1; f iÞ

ejkiR1

R1
dS ð11Þ

where ki ¼ xi=c and R1 ¼ jrS1 � rHj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � xÞ2 þ ðy1 � yÞ2 þ ðzS � zHÞ2

q
.

Taking the point source into account, the integral in Eq. (11) can
be evaluated as

jpðrH; f iÞj ¼
qcQki
2pR1

jvðrS1; f iÞj: ð12Þ

with Q a small constant. Moreover, the relationship between
jpðrH; f iÞj and jpðrH; f qÞj is obtained as

H. Zhou et al. / Applied Acoustics 109 (2016) 18–26 19



Download	English	Version:

https://daneshyari.com/en/article/754354

Download	Persian	Version:

https://daneshyari.com/article/754354

Daneshyari.com

https://daneshyari.com/en/article/754354
https://daneshyari.com/article/754354
https://daneshyari.com/

