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a b s t r a c t

The present study deals with an exact analysis of free transverse vibrations of annular plates having small
core and sliding inner edge and the outer edge being elastically restrained based on classical plate theory.
This study focuses mainly on the influence of variations in the elastic restraint parameters on the funda-
mental frequencies of plate vibration. The natural frequencies for the first six modes of annular plate
vibrations are computed for different materials and varying values of the radius parameter and these nat-
ural frequencies may correspond to either axisymmetric and/or non-axisymmetric modes of plate vibra-
tion. The extensive data of values of fundamental frequency parameter presented in this paper is believed
to be of use in the design of acoustic underwater transducers, ocean and naval structures, compressor and
pump elements, offshore platforms. These results may serve as bench mark values for researchers to val-
idate their results obtained using approximate numerical methods.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Vibrations of annular plates are an important area of interest in
the design of commonly used structural components in the aero-
space and nuclear plant structures. There exists a considerable
amount of literature on the vibration of annular plates, especially
with classical edge conditions [1–4]. The fundamental frequency
corresponds in general to the axisymmetric mode with no nodal
diameter, and the plate with both edges free vibrates with two
nodal diameters. Interestingly, the fundamental frequency may
switch from no nodal diameter to one as the core radius is
decreased for annular plates with their inner edge being either
clamped or simply supported and the outer edge being free [5–10].

Southwell [11] analytically studied the problem of free vibra-
tion characteristics of clamped–free annular plates by employing
the method of asymptotic expansions the case of the radial dis-
tance b approaches zero. It is found that the frequency rises singu-
larly from zero for smaller values of b. Kim and Dickinson [12]
studied the influence of elastic edge restraints on the natural fre-
quencies of polar orthotropic and isotropic annular and circular
plates. Vera et al. [13,16] investigated the effect of elastic restraint
against rotation on the frequencies of vibration of circular annular

plates which has practical application in acoustic underwater
transducers. Recently Rao and Rao [14] studied the problem of
buckling of annular plates involving elastic restraints and sliding
ends. Further Rao and Rao [15] studied the vibration characteristics
of circular plates resting on elastic foundation involving sliding
edge conditions. The free vibration characteristics of circular plates
with attached core are studied firstly by Wang and Wang [16]. In a
more recent study, Yuce and Wang [17] discussed and presented
perturbation methods for the parallel case of a moderately ellipti-
cal plate with an attached core.

The case of annular plates with small core was analyzed by
Wang [18] and they presented results for the fundamental natural
frequencies especially for the case of non-dimensional radial dis-
tance b less than 0.1. However, their study deals with annular
plates having combinations of classical boundary conditions such
as clamped, simply supported or free boundary conditions at the
inner and outer edges of the plate. As we know in practical indus-
trial applications of annular plates they are often subjected to com-
plex combinations of classical boundary conditions more closely
modeled using elastic restraints such as rotational and transla-
tional restraints [19,11–15].

To circumvent the difficulty of solving transcendental frequency
equations that result from exact methods of solution which involve
trigonometric, hyperbolic or Bessel functions, Li [20,21] developed
a modified Fourier series technique and applied the same success-
fully to solve the free vibration problem of generally restrained
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beams. Based on the excellent convergence obtained from the
modified Fourier series method together with Ritz method, it is
widely used in various studies on vibrations of functionally graded
circular, annular and sector plates and curved shells involving var-
ious complex boundary conditions [22–30].

Using exact analysis methodology, the purpose of the present
paper is to investigate, the influence of edge restraints on the fun-
damental frequencies of the annular plates with small core and
having sliding inner edge and outer edge being elastically
restrained. The accurate and exact natural frequency data pre-
sented in this study is believed to be of use in improving the per-
formance of certain economic underwater acoustic transducers
and the design of parts of ship decks to printed circuit boards pass-
ing through nuclear reactor elements and mechanical applications
in engines, etc.

2. Mathematical formulation

Let us consider a thin circular annular plate of outer radius R,
inner radius bR, uniform thickness h, Young’s modulus E, flexural
rigidity D and Poisson’s ratio m. The annular plate is also assumed
to be made of linearly elastic, homogeneous and isotropic material.
The outer edge of the annular plate is elastically restrained against
rotation and translation and inner edge is sliding. Let the symbol I
denote the outer region b 6 r 6 1 and II denote the inner region
0 6 r 6 b. Here all lengths are normalized with respect to R, i.e.,
the radius of outer region is 1 and that of inner region is b (see
Fig. 1).

In the classical plate theory [1], the following fourth order dif-
ferential equation describes free transverse vibrations of a thin cir-
cular uniform plate.

Dr4wþ qh
@2w
@t2

¼ 0 ð1Þ

where D = Eh3/12(1 � m2). The general form of the lateral displace-
ment of the vibration of a classical thin plate can be expressed as
w = u(r) cos (nh)eiXt, where w is the transverse displacement, n is
the integer and X is the frequency. The function u(r) is a linear

combination of the Bessel functions Jn(kr), Yn(kr), In(kr) and Kn(kr).

Where k ¼ R qhX2

D

� �1=4
is the square root of the non-dimensional fre-

quency [1].
Following the exact method of analysis, the general solution of

Eq. (1) is given by

uðrÞ ¼ C1JnðkrÞ þ C2YnðkrÞ þ C3InðkrÞ þ C4KnðkrÞ ð2Þ

Case (i) Outer edges of an annular plate is elastically retrained
against rotation and translation:

The boundary conditions at outer region of the annular plate
can be formulated in terms of effective rotational (KR1) and trans-
lational (KT1) stiffness

Mrðr; hÞ ¼ KR1
@wIðr; hÞ

@r
ð3Þ

Vrðr; hÞ ¼ �KT1wIðr; hÞ ð4Þ
where the bending moment and the Kelvin–Kirchhoff shear force
are defined as follows
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Eqs. (3) & (5) and (4) & (6) can be written as
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¼ T11wIðr; hÞ ð8Þ

where R11 ¼ KR1R
D and T11 ¼ KT1R

3

D are normalized spring constants of
KR1 and KT1 of the rotational and translational elastic springs
respectively.

At r = 1, the Eqs. (7) and (8) can be written as

u00ð1Þ þ mðu0ð1Þ � n2uð1ÞÞ ¼ �R11u0ð1Þ ð9Þ

u000ð1Þ þ u00ð1Þ � ½1þ n2ð2� mÞ�u0ð1Þ þ n2ð3� mÞu0ð1ÞÞ ¼ T11uð1Þ
ð10Þ

Case (ii) Inner edge of an annular plate is sliding:
The boundary conditions at the inner region of the annular plate

can be formulated as:

@wIIðr; hÞ
@r

¼ 0 ð11Þ

Vrðr; hÞ ¼ 0 ð12Þ
where the Kelvin–Kirchhoff shear force is defined as follows
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Eqs. (12) and (13) can be written asFig. 1. Annular plate with small core (RT-G boundary).
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