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are large scale, the robust counterpart is computationally challenging to solve. To address this challenge,
we explore different strategies of adding constraints in a constraint generation solution approach. We
motivate and demonstrate our approach using robust intensity-modulated radiation therapy treatment
planning for breast cancer. We use clinical data to compare the computational efficiency of our constraint
generation strategies with that of directly solving the robust counterpart.
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1. Introduction

Robust Optimization (RO) deals with optimization problems in
which some problem parameters are uncertain and modeled as
belonging to an “uncertainty set” [1,2]. One of the areas in which
robust optimization has been applied is radiation therapy (RT)
treatment planning. In RT, the goal is to deliver radiation beams
from different angles to a cancer patient so that the beams intersect
at the cancerous target (i.e., a tumor), while sparing as much of
the surrounding healthy tissue as possible. Robust optimization
has been used to manage uncertainties in RT treatment planning
problems including uncertainties in patient geometry [3], dose
calculations [4], breathing motion [5-10], and range and setup
errors in proton therapy [11-14].

Much effort in RO is placed on deriving tractable robust coun-
terparts, which are finite-sized deterministic equivalents to the
original RO problem. However, the resulting robust counterpart
can still be quite large and computationally challenging to solve
for real-world problem instances. In radiation therapy treatment
planning for example, the original problem is often of a very large
scale and the robust counterpart is even larger. Therefore, there is
a need for specialized solution methods to solve these problems.
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Decomposition methods, which have a long history [15,16],
represent a wide range of methods that can be used to solve
large-scale optimization problems. Constraint generation is one
type of decomposition method that has been used extensively to
solve large-scale optimization problems in applications such as
timetable scheduling [17], network reliability [18], network de-
sign [19], facility location [20], and network interdiction [21,22].
Oskoorouchi et al. [23] developed an interior point constraint gen-
eration algorithm for semi-infinite problems that was applied to
radiation therapy.

In this paper, we develop a family of constraint generation
strategies to solve large-scale robust optimization problems in ra-
diation therapy. We focus on problems with multiple sets of ro-
bust constraints, which necessitates exploring different strategies
for choosing constraints to be added at each iteration. We test
several strategies for finding and adding constraints efficiently.
We also compare the computational efficiency of the constraint
generation methods with that of directly solving the robust coun-
terpart. Our solution approach is motivated by the robust intensity-
modulated radiation therapy (IMRT) treatment planning problem
for breast cancer, in which there exists a large number of robust
constraints [8].

2. Breast cancer IMRT treatment planning

Previously, a robust optimization model that incorporated
conditional value-at-risk (CVaR) [24,25] was developed for breast
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cancer IMRT to control the tail dose to the tumor and organs-at-
risk under breathing motion uncertainty [8]. In this section, we first
introduce this problem and then briefly describe the optimization
model in order to motivate the development of our constraint
generation strategies.

2.1. Background

In IMRT, the radiation beams can be modeled as a collection of
small beamlets whose intensities are optimized. An optimization
problem is to find the intensity of each beamlet such that sufficient
dose is delivered to the tumor while minimizing the dose to
the surrounding healthy tissue. Our approach to breast cancer
IMRT follows the clinical protocol at the Princess Margaret Cancer
Centre [26,27]. There are two opposed beams that are tangent to
the body and deliver radiation to a target volume in the breast
tissue. In left-sided breast cancer, parts of the left lung and the
heart are usually inside the treatment field and are considered
to be organs-at-risk (OAR). Since the radiation is delivered to
the patient while the patient is breathing, the organs move and
deform throughout the course of the treatment. In particular, the
heart may move inside the treatment field and become exposed
to excessive radiation. Four-dimensional computed tomography
(4D-CT) images are used to obtain geometrical information about
the organs over the phases of the patient’s breathing cycle from
inhale to exhale. The uncertain parameter in this problem is the
patient’s breathing pattern, which is modeled as a probability mass
function (PMF) that captures the fraction of time that the patient
spends in each breathing phase. We construct the uncertainty set
by including upper and lower error bounds on a nominal breathing
pattern|8].

2.2. Arobust-CVaR optimization model for breast cancer IMRT

Here, we briefly introduce the optimization model from Chan
et al. [8], which proposes the robust optimization model that we
consider. Let wj, be the intensity of beamlet b € 8, where B is the
set of all beamlets. The body is discretized into small volumetric
pixels called “voxels”. Let VT and V¥ be the set of all voxels
in the clinical target volume (inside the breast) and the heart,
respectively. A breathing PMF is defined over the set of breathing
phases {.

The total dose to each voxel is the sum of the dose accumulated
over all breathing phases and depends on the uncertain fraction
of the time spent at each phase. Let A, ; ;, be the influence matrix,
which quantifies the amount of dose that voxel v receives when
the patient is in phase i per unit intensity of beamlet b. A robust
upper B-CVaR constraint on the target can be formulated as:
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The variable ¢ is the value-at-risk (VaR) of the dose distribution,
which captures the 8 percent of an organ that is receiving the
highest amount of dose. Parameter U} is the upper bound on the
conditional-value-at-risk (CVaR) which is the average 8% of the tail
of the dose distribution. Constraint (1) is a S-CVaR constraint and
must be met for all breathing patterns p in the given uncertainty
set &, which is a polyhedral set. Lower CVaR constraints can
be formulated similarly. Model (2) shows the robust-CVaR IMRT
model with one set of upper and lower $-CVaR constraints for
limiting overdose and underdose to the target.
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In a robust IMRT problem, there may exist multiple CVaR
constraints on an organ for different values of . Notice that
constraint (2c) and (2e) must hold for all voxels in the tumor. We
define a type of robust constraint as one that must hold for the
same set of voxels for the same f§ value and in the same inequality
direction (i.e., upper or lower CVaR constraints) for all p € 2.
For example, all the upper B-CVaR constraints in (2c) are of the
same type, although they are separate constraints for each voxel
on the tumor. On the other hand, the sets of robust constraints (2¢)
and (2e) are of different types. Similarly, constraints for different g
values or for different organs would be of different types.

Because the original problem is linear and the uncertainty set
is polyhedral, the robust counterpart of this problem is linear.
However, the large number of robust constraints make the robust
counterpart very large. Alternatively, because the uncertainty
set is polyhedral, an equivalent reformulation exists by simply
enumerating the vertices of #. In general though, enumerating all
the vertices of a polyhedron is NP-hard [28] and could lead to an
exponential number of constraints. Thus, we consider constraint
generation as an alternative solution method.

3. A constraint generation solution method

In this section, we first formulate a general form of the previous
RO problem with multiple uncertain constraints. Then, we define
the steps of the constraint generation algorithm and develop
several constraint addition strategies.

3.1. A robust optimization problem with uncertain constraints

Consider a robust optimization problem with uncertain con-
straints of different types k € X that must hold forevery v € V (k).
Let w be the decision vector. The uncertainty is in the vector p € &
which is a parameter that affects all robust constraints. In other
words, all robust constraints must hold for all values of p in the
uncertainty set &. Let ¢ be the vector of objective function coeffi-
cients and A, x be the constraint coefficient matrix for constraint
type k € X forevery v € V(k).Given that |{| and |8B| are the sizes
of the vectors p and w, respectively, the size of the matrix A, j is
[4] x |8] for each v, k. The parameter a, y is the right hand side
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