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a b s t r a c t

Efficient health care delivery systems aim to match resources to demand for services over time. Resource
allocation decisions must be made under stochastic uncertainty. This includes uncertainty in the number
of individuals (i.e., counts) in need of services over discrete time intervals. Examples include counts
of patients arriving to emergency departments and counts of prescription medications distributed by
pharmacies. Accurately forecasting count data in health care systems allows decision-makers to anticipate
the need for services andmake informed decisions about how tomanage resources and purchase supplies
over time.

A publicly available toolbox to forecast count data is developed in this work. The toolbox is imple-
mented in MATLAB environment with the newly developed generalized autoregressive moving average
(GARMA) models with discrete-valued distributions. GARMA models treat count data in a mathemati-
cally coherent manner compared to Gaussian models, often inappropriately applied in health care appli-
cations. GARMAmodels can incorporate none tomany exogenous variables hypothesized to influence the
predicted responses (i.e., counts forecasted). The toolbox’s primary purpose is to deliver one to multiple-
steps ahead forecasts, but also gives information for model inference and validation. The toolbox uses
the maximum likelihood method to estimate model parameters from the data. We demonstrate toolbox
application and validity on two example health care count data sets and show how using integer-valued
conditional distributions as offered by GARMA models can produce forecast models that outperform the
traditional Gaussian models.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Health care delivery systems are often stressed by uncertain
(i.e., variable) demand for services over time [1]. A large source of
this variation stems from the natural pattern in which individu-
als within a population need specific health care resources [2,3].
Managing scarce resources often requires forecasts of discrete
health care events in the form of count data. Forecasting applica-
tions for count data may be useful for both short-term (e.g., hourly
tomonthly) and long-term (e.g., years) management and planning.

Short-term forecasting applications are useful to decision-
makers at both the organizational and public health system levels
[4]. Provider organizations such as hospitals, clinics, and networks

∗ Corresponding author.
E-mail address:m.jalalpour@csuohio.edu (M. Jalalpour).

of facilities must anticipate demand for services and match capac-
ity, staffing, and supplies to be most efficient [2,5–12]. A lack of
resources may lead to crowded care areas, long waits, and inhib-
ited access. Excess and idle resources incur unnecessary costs and
become unviable. Specific examples include forecasting patients
arriving to an intensive care unit to maintain safe staffing lev-
els [13,14,6,15,8], predicting pharmacy medication distribution to
determine efficient inventory levels [16], and predicting patient
no-shows for clinic appointments to create optimal patient and
staff scheduling [17–20]. Clinician managers and health care ad-
ministrators are commonly forecasting in short-term to manage
daily operations within their organizations and understand vari-
ability. However, these forecasts are often based on human intu-
ition and experience with little scientific understanding of con-
tributing factors [8]. The same need to forecast count data in the
short-term exists at the environmental and public health level,
albeit for amuch different purpose. Government-based health care
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agencies such as the Center for Disease Control and Prevention
(CDC), World Health Organization (WHO), and public health re-
searchers apply forecasting mostly within the context of disease
surveillance (epidemiologic count data) and health care utiliza-
tion [21,22]. This is done to establish epidemiologic patterns in
disease spread, understand contributing factors, detect outbreaks
early, and evaluate public health measures [23,24,4,25–31]. How-
ever, thesemodelsmust predict awide range ofmagnitudes,which
may be challenging when low counts exist [32–35], and be math-
ematically coherent.

At present, data-driven methods to forecast counts include dis-
crete event simulation [36,7,37], and time series models [38–43],
which is the focus of this study. For these types of data, tradi-
tional time seriesmodels (Gaussian)may not be adequate, because
continuous distributions, which may include negative values, are
not coherent with count responses that must be positive integers.
A more realistic approach is to use a generalized model which
can specify the conditional distribution of the response variable
(weekly counts for example), given past values of the response as
well as observations of exogenous variables (or covariates). Such
models were first proposed by Liang and Zeger [44] and Li [45]
and subsequently extended by Benjamin et al. [46] to general-
ized mixed autoregressive moving average models (GARMA) with
discrete-valued distributions suitable for count data. Another key
advantage of GARMA models is their parsimonious parametriza-
tion that accommodates non-stationary dynamics of the observed
time series.

The objective of this paper is to develop an open-source tool-
box to forecast count data sets deploying GARMA models. This
toolbox may be useful to health care decision-makers and man-
agers studying health care operations fromwithin provider organi-
zations and across public health systems [36,7,37,39–43]. Despite
the need, there is a clear lack of publicly available packages offer-
ing GARMA implementation. This is partly because GARMA mod-
els are nonlinear making their parameter estimation a non-trivial
task. Benjamin et al. [46], who proposed these models initially,
usedGLIM (Generalized Linear InteractiveModeling) software [47]
for model fitting, and they also mentioned the possibility of us-
ing a weighted least squares fitting procedure in S-PLUS. GLIM,
however, is no longer actively supported or distributed, but has
been advanced to GAMLSS within R environment [48]. The other
R alternative is the VGAM package [49,50]. However, this package
is limited to autoregressive structures and in-sample predictions,
does not handle overdispersion, and is sensitive to initialization
(likely due to the R optimizer quality). To the authors’ knowledge,
there are no other packages offering a GARMA option and no single
implementation of GARMA in MATLAB, which is especially critical
given that MATLAB, a high-level programming language, remains
one of themostwidely used analytical software systems in the field
of operations research [51–54]. The newly developedGARMA tool-
box also includes routines for multiple-steps ahead out-of-sample
forecasting, model verification, and inference. In addition, we take
advantage of MATLAB unconstrained optimization algorithm for
delivering a more precise and stable maximum likelihood estima-
tor. Previous research by our team studying the ability of Google
influenza search query data (i.e., Google Flu Trends) [31] to predict
weekly counts of patientswith influenza presenting to an inner city
emergency department (ED) motivated the development of this
open-source toolbox.1 The toolbox may be used to forecast counts
at any pre-defined discrete time intervals. However, the time se-
ries approach deployed is most relevant for short-term forecasting
in health care.

We illustrate application of the GARMA toolbox on a public
health level data set of monthly counts of polio cases reported
by the Center for Disease Control (CDC) and on weekly counts of

1 The new GARMA toolbox is currently available from https://sites.google.com/
site/mehdijalalpour/research.

patients with influenza at the Johns Hopkins Hospital emergency
department at Baltimore, Maryland, US (health care facility level).
Using these examples, we demonstrate the toolbox routines for
model fitting, validation, inference, and out-of-sample forecasting.
We also show how using integer-valued conditional distributions
as offered by GARMA models can produce forecast models that
outperform the traditional Gaussian models for these examples.
We believe the improved performance for GARMA compared to
Gaussian models may be generalized to other discrete-valued
count data sets encountered in health care decision-making
applications.

2. Methods

2.1. Notation and derivations

We assume responses (counts of patients for example) and ex-
ogenous variables data (average temperature and humidity for ex-
ample) are collected at equal time intervals (weekly for example).
There is a total of T time intervals, each denoted by t , and n exoge-
nous variables. Therefore, the responses and exogenous variables
can be stored in a vector y of length T and a matrix X with T rows
and n columns respectively. Each observation for response and ex-
ogenous variables are denoted by yt and x⊤

t respectively, where x⊤
t

is n × 1 vector. GARMA models assume that the conditional distri-
bution of response given past information (responses, exogenous
variables, and mean values) belongs to the family of exponen-
tial distributions (for example Poisson, Gaussian, and Negative-
Binomial). Moreover, the conditional expected value of response
is connected to past information by a one-to-one monotonic link
function. The general GARMA(p, q) model for one-step ahead pre-
diction with respect to the responses is expressed as [46]:

g(µt) = ηt = x⊤

t β +

p
j=1

φj{g(yt−j) − x⊤

t−jβ}

+

q
j=1

θj{g(yt−j) − ηt−j}. (1)

In Eq. (1), p and q aremodel autoregressive andmoving average
orders respectively, and β, φ, θ are vectors of model parameters
with dimensions n, p, and q respectively. The link function g(.)
maps the expected value of response (µt) to the linear predictor
ηt . The link functions are canonical, identical to generalized linear
model (GLM) [55]. The second term in Eq. (1) is the autoregressive,
and the third term is the moving average component of the model.
A GARMA model without these terms reduces to a GLM.

The maximum likelihood method is used to estimate model
parameters. The likelihood function for the data can be written as:

f (yT , yT−1, · · · y1|DT ; γ) = f (yT |DT ; γ) × · · · f (ym|Dm; γ)

× f (ym−1; γ) × · · · f (y1; γ), (2)

wherem = max(p, q) and Dt =

xt , . . . x1, yt−1, . . . , y1, µt−1, . . .

µ1

is the matrix of past information and γ = β, φ, θ is the

vector of model parameters. The left side of Eq. (2) is the joint
probability density function of responses which may be expressed
in terms of conditional and marginal distributions as seen in the
right side of Eq. (2). Conditioned on the firstm−1 observations and
assuming that each response given past information follows the
same exponential family distribution, the log-likelihood function
for the data is expressed as [46]:

L =

T
t=m

log f (yt |Dt; γ), (3)

where f (.) is the probability density function (pdf) of the assumed
exponential family. The set of exponential family distributions
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