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a b s t r a c t

In this paper, we investigate the parametric weight knapsack problem, in which the item weights are
affine functions of the form wi(λ) = ai +λ · bi for i ∈ {1, . . . , n} depending on a real-valued parameter λ.
The aim is to provide a solution for all values of the parameter. It is well-known that any exact algorithm
for the problem may need to output an exponential number of knapsack solutions. We present the first
fully polynomial-time approximation schemes (FPTASs) for the problem that, for any desired precision ε ∈

(0, 1), compute (1−ε)-approximate solutions for all values of the parameter. Among others, we present a
strongly polynomial FPTAS running in O

(
n5

ε2
· log3 n

ε

/
logn

)
time and a weakly polynomial FPTAS with

a running time of O
(

n3

ε2
· log2 n

ε
· logP · logM

/
logn

)
, where P is an upper bound on the optimal profit

and M := max{|W |, n · max{|ai|, |bi| : i ∈ {1, . . ., n}}} for a knapsack with capacityW .
© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The knapsack problem is one of the most fundamental com-
binatorial optimization problems: Given a set of n items with
weights and profits and a knapsack capacity, the task is to choose a
subset of the items with a maximum profit such that the weight of
these items does not exceed the knapsack capacity. The problem is
known to be weakly NP-hard and solvable in pseudo-polynomial
time. Moreover, several constant factor approximation algorithms
and approximation schemes have been developed for the problem
[11,13,14,16,17] (cf. [15] for an overview).

In this paper, we investigate a generalization of the problem
in which the weights are no longer constant but affine functions
depending on a parameter λ ∈ R. More precisely, for a knapsack
with capacity W and for each item i in the item set {1, . . . , n} with
profit pi ∈ N>0, theweight wi is now of the form wi(λ) := ai +λ ·bi
with ai, bi ∈ Z. The resulting optimization problem can be stated
as follows:

p∗(λ) = max
n∑

i=1

pi · xi

n∑
i=1

(ai + λ · bi) · xi ⩽ W

xi ∈ {0, 1} ∀i ∈ {1, . . . , n}.
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The aim of this parametric weight knapsack problem is to return
a partition of the real line into intervals (−∞, λ1], [λ1, λ2], . . . ,
[λk−1, λk], [λk, +∞) together with a solution x∗ for each interval
such that this solution is optimal for all values of λ in the interval.

Besides the fact that the parametricweight knapsack problem is
clearly NP-hard to solve since it contains the traditional knapsack
problem, Woeginger has shown that any exact algorithm for the
problem may need to return an exponential number of knapsack
solutions in general (Ref. [16] in [2]). In this paper, we are in-
terested in a fully polynomial time approximation scheme for the
parametric weight knapsack problem. We will show that, for any
desired precision ε ∈ (0, 1), a polynomial number of intervals
suffices in order to be able to provide a (1 − ε)-approximate
solution for each λ ∈ R.

In the following, we let P ⩽
∑n

i=1pi denote an upper bound on
the optimal profit and set

M := max{|W |, n} · max{|ai|, |bi| : i ∈ {1, . . ., n}}. (1)

1.1. Previous work

A large number of publications investigated parametric
versions of well-known problems. This includes the paramet-
ric shortest path problem [4,12,21,23], the parametric minimum
spanning tree problem [1,7], the parametric maximum flow prob-
lem [8,18,22], and the parametric minimum cost flow problem [3]
(cf. [9] for an overview).

A problem that is related to the parametric weight knapsack
problem considered here is the parametric profit knapsack prob-
lem, in which the weights are constant but the profits take on an
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affine form pi(λ) = ai + λ · bi. Carstensen [3] first showed that
the number of breakpoints of the optimal profit function may be
exponentially large in general and pseudo-polynomially large in
the case of integral input data. Eben-Chaime [5] later presented
a pseudo-polynomial exact algorithm for this problem. Giudici et
al. [9] derived a PTAS for the general problem and, for the case
that λ ⩾ 0 and ai, bi ⩾ 0 for all i ∈ {1, . . . , n}, an FPTAS
with a weakly polynomial running-time. Recently, Holzhauser and
Krumke [10] presented an FPTAS for the problem that works for
arbitrary integral values of ai, bi and runs in strongly polynomial
time.

To the best of our knowledge, the parametric weight knapsack
problem considered here was mentioned in only one publication
so far. Burkard and Pferschy [2] show that the optimal profit of
the parametricweight knapsack problem can attain an exponential
number of values in general, yielding that any exact algorithm
for the problem must output an exponential number of knapsack
solutions. The authors present a pseudo-polynomial algorithm for
the inverse problem, in which the largest value for the parameter
is searched that allows some given profit.

1.2. Our contribution

Wepresent the first FPTASs for the parametric weight knapsack
problem. In fact, these are the first approximation algorithms for
the problem and it is even the first algorithmic approach at all.
Our algorithms are based on an implicit scaling technique due to
Erlebach et al. [6], in which a (1 + ε)-grid is laid over the search
space of the underlying dynamic programming scheme such that
only a polynomial number of entriesmust be evaluated. By refining
this approach, we are able to derive several FPTASs for the para-
metric weight knapsack problem. Our best strongly polynomial
FPTAS achieves a running time of

O

(
n5

ε2 · log3
n
ε

/
log n

)
.

Moreover, one of our weakly polynomial FPTASs runs in

O

(
n3

ε2 · log2
n
ε

· log P · logM
/

log n
)

time, where P is an upper bound on the optimal profit and M :=

max{|W |, n · max{|ai|, |bi| : i ∈ {1, . . ., n}}} for a knapsack with
capacityW .

1.3. Organization

The results of this paper are divided into three main parts. In
Section 2, we develop a very first version of our FPTAS. First, in
Section 2.1, we recapitulate the FPTAS for the traditional knap-
sack problem due to Erlebach et al. [6] and generalize it to the
parametric setting in Sections 2.2 and 2.3. In Section 3, we show
how we can improve this algorithm in order to obtain a strongly
polynomial FPTAS for the problem. Finally, we present another
possible improvement in Section 4, which yields a faster weakly
polynomial FPTAS for the problem.

2. Obtaining a parametric FPTAS

2.1. Traditional FPTAS

Consider the case of some fixed value forλ such that theweights
have a constant (and possibly negative) value wi. The FPTAS due to
Erlebach et al. [6] for the traditional knapsack problem is based on a
well-known dynamic programming scheme, which was originally
designed to solve the problem exactly in pseudo-polynomial time:
Let P denote an upper bound on the maximum profit of a solution

to the given instance. For k ∈ {0, . . . , n} and p ∈ {0, . . . , P}, let
w(k, p) denote the minimum weight that is necessary in order to
obtain a profit of exactly p with the first k items. For k = 0, we
set w(0, p) = 0 for p = 0 and w(0, p) = W + 1 for p > 0.
For k ∈ {1, . . . , n} and for the case that pk ⩽ p, we compute the
values w(k, p) recursively by

w(k, p) = min{w(k − 1, p), w(k − 1, p − pk) + wk}, (2)

representing the choice to either not pack the item or to pack it,
respectively. Else, if pk > p, we set w(k, p) = w(k − 1, p). The
largest value of p such that w(n, p) ⩽ W then reveals the optimal
solution to the problem. The procedure runs in pseudo-polynomial
time O(nP).

The idea of the FPTAS is to perform this dynamic programming
scheme only for a polynomial number of profits: Instead of con-
sidering each integral profit in {0, . . . , P}, the profit space is being
reduced to the points in the set

S := {0} ∪

{
(1 + ε)

i
n : i ∈ {0, . . . ,

⌈
nlog1+εP

⌉
}

}
.

The entries of w(·, ·) are only computed for the points in the set S
such that the evaluation of the dynamic programming schemenow
takes polynomial time O

(
n2

· log1+εP
)

= O

(
n2
ε

· log P
)
. In order

for the recursion to be well-defined, the term p − pk is ‘‘rounded
up’’ to the next value in S in Eq. (2). Hence, w(k, p) denotes the
minimum weight that is necessary to achieve a profit of at least p.
It is easy to see that, in the case of constant weights, this approach
yields an FPTAS for the knapsack problem (cf. [6]).

2.2. Parametric FPTAS

Now consider the parametric problem setting. Obviously, the
weights of the items change as the parameter λ increases such
that new solutionsmay become feasible and current solutionsmay
become infeasible as the parameter λ increases. The idea of the
FPTAS is to consider each possible profit p ∈ S individually and
to determine the values of λ for which a profit of p can be achieved
by a feasible solution to the scaled knapsack instance.

In the following, it will be useful to interpret the underlying
dynamic programming scheme as a shortest path problem: Con-
sider an acyclic graph similar to the one shown in Fig. 1 and let
(p(0), . . . , p(̃P)) denote an ordered sequence of the elements in S.
For each k ∈ {0, . . . , n} and profit p(l) ∈ S, we insert a node vl,k
and, if k ⩽ n−1, connect it with vl,k+1 via an edge with zero length
as well as with vl′,k+1 via an edge with length wk+1(λ), where l′ is
the largest value such that p(l

′) ⩽ p(l)+pk+1. It is easy to see that the
structure of the graph reflects the recursion given in (2) applied to
the set S. An approximate solution to the knapsack instance then
corresponds to the largest profit p ∈ S that allows a path from v0,0
to vp,n with length at mostW .

Now consider some specific profit p ∈ S. In general, there
may be a super-polynomial number of paths in the graph that
lead from v0,0 to vp,n. The lengths of these paths are described by
affine functions depending on the parameter λ andmay increase or
decrease as λ increases. Since we are interested in shortest paths,
we can restrict our considerations to the function ω(p)

: R → R
mapping the parameter λ to the length of a shortest path from v0,0
to vp,n. Clearly, the function ω(p) is concave, continuous, and piece-
wise linear since it is the point-wise minimum of finitely many
affine functions (see Fig. 2). Whenever ω(p)(λ) ⩽ W , the knapsack
solution induced by a shortest path from v0,0 to vp,n is feasible and
attains a profit of at least p. Besides the special cases that, for all
λ ∈ R, ω(p)(λ) ⩽ W or, for all λ ∈ R, ω(p) > W , there is at
most one interval I (p)− := (−∞, λ1] and at most one interval I (p)+ :=

[λ2, +∞) with ω(p)(λ1) = ω(p)(λ2) = W containing the values of
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