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a b s t r a c t

This paper considers the augmented truncation approximation of the generator of an ergodic continuous-
time Markov chain with a countably infinite state space. The main purpose of this paper is to present
bounds for the absolute difference between the stationary distributions of the original generator and
its augmented truncation. As examples, we apply the bounds to an M/M/s retrial queue and an upper
Hessenberg Markov chain.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let {X(t); t ≥ 0} denote an ergodic continuous-time Markov
chain on state space Z+ := {0, 1, 2, . . . }, which has the generator
Q := (Q (i, j))i,j∈Z+

. Let π := (π (i))i∈Z+
denote the stationary

distribution vector of Q , i.e., πQ = 0 and πe = 1, where e =

(1, 1, . . . )⊤.
In this paper, we consider the augmented truncation approxi-

mation of Q . To this end, we introduce the northwest-corner trun-
cation of Q . For n ∈ Z+, let (n)Q := ((n)Q (i, j))i,j∈Zn denote the
(n+1)× (n+1) northwest-corner truncation of Q , i.e., (n)Q (i, j) =

Q (i, j) for i, j ∈ Zn, where Zn = {0, 1, . . . , n}.
Note that (n)Q is a Q -matrix (diagonally dominant matrix with

nonnegative off-diagonal elements and nonpositive row sums;
see [1, Section 2.1, page 64]). The ergodicity of Q implies that
(n)Qe ≤ 0, ̸= 0, i.e., (n)Q is not conservative (see [1, Section 2.1,
page 64]). Hence, we augment the elements of (n)Q and extend the
truncated state space Zn to the original one Z+ in order to con-
struct a conservative Q -matrix as an approximation to the original
generator Q .
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For n ∈ Z+, we define (n)Q̃ := ((n)Q̃ (i, j))i,j∈Z+
as a conservative

Q -matrix such that, for i ∈ Z+,

(n)Q̃ (i, j) = Q (i, j) + ψn,i(j)
∑

ℓ≥n+1,ℓ̸=i

Q (i, ℓ), j ∈ Zn, (1a)

(n)Q̃ (i, j) = Q (i, i), i = j ∈ Zn, (1b)

(n)Q̃ (i, j) = 0, i ̸= j ∈ Zn, (1c)

where Zn = {m ∈ Z+ : m ≥ n + 1}, and where ψn,i( · ) is a
probability distribution on Zn that may depend on (n, i) ∈ Z2

+
.

Clearly, for any fixed (i, j) ∈ Z2
+
, we have limn→∞ (n)Q̃ (i, j) =

Q (i, j). Thus,we refer to (n)Q̃ as then-th order augmented northwest-
corner truncation approximation (called the augmented truncation,
for short) of Q .

In defining (n)Q̃ , we append additional elements to (n)Q in a
suchway that the resultingQ -matrix (n)Q̃ has the same order (size)
as the original generator Q . This is aimed at performing algebraic
operations involving the original generator Q , e.g., (n)Q̃ − Q .

Such an extension (of the truncated state space Zn) is not
unique. However, (1a)–(1c) imply that the appended states in Zn
are transient and that all the closed communicating classes of (n)Q̃
are finite sets in Zn. Therefore, (n)Q̃ has at least one stationary
distribution vector, whose elements in Zn are all equal to zero.

We denote by (n)π̃ := ((n)π̃ (i))i∈Z+
, an arbitrary one of the

stationary distribution vectors of (n)Q̃ . For later use, let | · | denote
a matrix (resp. vector) obtained by taking the absolute value of
each element of the matrix (resp. vector) in the vertical bars. For
any row vector µ := (µ(i))i∈Z+

and nonnegative column vector
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v := (v(i))i∈Z+
̸= 0, let ∥µ∥v =

∑
i∈Z+

|µ(i)|v(i) = |µ|v, which
denotes the v-norm of the row vector µ.

The main purpose of this paper is to derive bounds for ∥(n)π̃ −

π∥g , where g := (g(i))i∈Z+
denotes a nonnegative column vector.

For this purpose, we assume the following.

Assumption 1.1 (f -Modulated Drift Condition). There exist some
b ∈ (0,∞), finite set C ⊂ Z+, column vectors v := (v(i))i∈Z+

> 0
and f := (f (i))i∈Z+

≥ e such that v0 := infi∈Z+
v(i) > 0 and

Qv ≤ −f + b1C, (2)

where, for any set B ⊆ Z+, 1B := (1B(i))i∈Z+
denotes a column

vector such that 1B(i) = 1 for i ∈ B and 1B(i) = 0 for i ∈ Z+ \ B.

There have beenmany studies on the augmentation approxima-
tion (see e.g., [3,4,17,20]). Masuyama [13] studied the last-column-
block-augmented truncation (called LC-block-augmented truncation,
for short) of continuous-time block monotone Markov chains
(see [6]). Note that the LC-block-augmented truncation is a special
case of the augmented truncation (n)Q̃ . Masuyama [13] presented
some tractable bounds for the total variation distance ∥(n)π̃ − π∥e
(see [11,12] for discrete-time block-monotone Markov chains and
also see [8,19] for their special cases).

In addition, Masuyama [14] studied the LC-block-augmented
truncation without either any transition structure (such as block
monotonicity) or any specific ergodicity of Q . However, the fun-
damental bounds for ∥(n)π̃ − π∥g presented in [14] include an
intractable factor πv (see Theorems 2.1 and 2.2 therein).

Recently, Liu and Li [9] derived a bound for ∥(n)π̃−π∥g without
the factor πv under an additional condition that Assumption 1.1
holds for C = {i0} ∈ Z+ and v having nondecreasing elements
(see Theorem 6.1 therein).

The main contribution of this paper is to present such bounds
without πv in more general settings. The rest of this paper is
divided into two sections. Section 2 presents the main results of
this paper. To illustrate their applicability, Section 3 considers an
M/M/s retrial queue and an upper Hessenberg Markov chain.

2. Main results

2.1. Basic bounds

Let sgn(·) denote the sign function, i.e., sgn(0) = 0 and sgn(x) =

x/|x| for x ̸= 0. Let g̃ := (g̃(i))i∈Z+
denote a column vector such that

g̃(i) = sgn((n)π̃ (i) − π (i)) · g(i), i ∈ Z+.

We then prove the following lemma.

Lemma 2.1. Under Assumption 1.1, we have

∥(n)π̃ − π∥g = (n)π̃((n)Q̃ − Q )h, n ∈ Z+, (3)

where h := (h(i))i∈Z+
denotes a solution of the following Poisson

equation (see, e.g., [5]):

− Qh = g̃ − (πg̃)e. (4)

Proof. Using (4), (n)π̃e = 1 and (n)π̃ (n)Q̃ = 0, we have

(n)π̃((n)Q̃ − Q )h = −(n)π̃Qh = (n)π̃{g̃ − (πg̃)e}
= ((n)π̃ − π)g̃ = |(n)π̃ − π| g,

which yields (3).

For j ∈ Z+, we define hj := (hj(i))i∈Z+
as a column vector such

that, for i ∈ Z+,

hj(i) = Ei

[∫ τj

0
g̃(X(t))dt

]
− (πg̃)Ei[τj], (5)

where τj = inf{t ≥ 0 : X(t) = j} for j ∈ Z+ and Ei[ · ] = E[ · |

X(0) = i] for i ∈ Z+. Note that hj is a solution of the Poisson
equation (4) (see [14, Lemma B.2]). Thus, Lemma 2.1 implies that

∥(n)π̃ − π∥g = (n)π̃((n)Q̃ − Q )hj, (n, j) ∈ Z2
+
. (6)

We now introduce some definitions to bound |hj|. For β > 0,
let Φ(β)

= (φ(β)(i, j))i,j∈Z+
denote

Φ(β)
=

∫
∞

0
βe−βtP (t)dt, (7)

where P (t)
:= (P (t)(i, j))i,j∈Z+

is the transition matrix function of
the Markov chain {X(t)} with generator Q , i.e., P (t)(i, j) = P(X(t) =

j | X(0) = i) for i, j ∈ Z+. Note here that Φ(β) > O is a stochastic
matrix due to the ergodicity ofQ . For any finite setC ⊂ Z+, letm

(β)
C

denote ameasure on the Borel σ -algebraB(Z+) ofZ+ such that, for
j ∈ Z+,

m(β)
C (j) := m(β)

C ({j}) = min
i∈C

φ(β)(i, j) > 0. (8)

The following lemma presents a bound for |hj|.

Lemma 2.2. If Assumption 1.1 holds, then, for j ∈ Z+,

|hj| ≤ κ (g)

(
v +

b

βm(β)
C (j)

e

)
, 0 ≤ g ≤ f , β > 0, (9)

where

κ (g)
= 1 +

πg
infℓ∈Z+

f (ℓ)
. (10)

Proof. It follows from (5), |g̃ | ≤ g ≤ f and f ≥ e that

|hj(i)| ≤ Ei

[∫ τj

0
f (X(t))dt

]
+ πgEi[τj]

≤

(
1 +

πg
infℓ∈Z+

f (ℓ)

)
Ei

[∫ τj

0
f (X(t))dt

]
= κ (g)Ei

[∫ τj

0
f (X(t))dt

]
, i, j ∈ Z+, (11)

where the last equality holds due to (10). Following the derivation
of the bound (2.17) in [14], we can prove that

Ei

[∫ τj

0
f (X(t))dt

]
≤ v(i) +

b

βm(β)
C (j)

, i, j ∈ Z+.

Substituting this into (11) yields (9). □

Remark 2.1. From (2) and 0 ≤ g ≤ f , we have πg ≤ πf ≤

b
∑

i∈Cπ (i) ≤ b. Thus, if πg in (10) is intractable, then it can be
replaced by b or b

∑
i∈Cπ (i).

We now arrive at the main theorem of this paper.

Theorem 2.1. Suppose that Assumption 1.1 holds. Let

φ
(β)
C = sup

j∈Z+

min
i∈C

φ(β)(i, j) = sup
j∈Z+

m(β)
C (j). (12)

We then have, for n ∈ Z+,

∥(n)π̃ − π∥g ≤ κ (g)
· E(β)

0 (n), 0 ≤ g ≤ f , β > 0, (13)

where κ (g) is given in (10) and

E(β)
0 (n) = (n)π̃ |(n)Q̃ − Q |

(
v +

b

βφ
(β)
C

e

)
. (14)
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