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a b s t r a c t

In network design problems, capacity constraints are modeled in three different ways depending on the
application: directed, bidirected and undirected. In the literature, polyhedral investigations for strength-
ening mixed-integer formulations are done separately for each model. In this note, we examine the
relationship between thesemodels to provide a unifying approach and show that one can indeed translate
valid inequalities from one to the others.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In network design problems, capacity constraints are modeled
in three different ways depending on the application and the
underlying technology for installing capacity: directed, bidirected,
and undirected. In directedmodels, the total flowon an arc is limited
by the capacity of the directed arc. In bidirectedmodels, if a certain
capacity is installed on an arc, then the same capacity also needs
to be installed on the reverse arc. Whereas in undirected models,
the sum of the flow on an arc and its reverse arc is limited by the
capacity of the undirected edge associated with the two arcs.

In the literature, polyhedral investigations for strengthening
mixed-integer formulations are done separately for each model.
Undirected capacity models are considered in [2,10,11,13–16].
Bidirected capacity models are studied in [7,9]. Whereas directed
models are considered in [1,3–6,8,12]. Oriolo [16] gives a char-
acterization of domination between symmetric traffic matrices
for the undirected capacity model. In this paper, we examine
the relationship between these three separately-studied models
to provide a unifying approach and show how one can translate
valid inequalities from one to the others. In particular, we show
that the projections of the undirected and bidirected models onto
the capacity variables are the same. We demonstrate that valid
inequalities previously given for undirected and bidirectedmodels
can be derived as a consequence of the relationship between these
models and the directed model.

Let G = (N, E) be an undirected graph with node set N and
edge set E. Let A be the arc set obtained from E by including the
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arcs in each direction for the edges in E. Let M denote the set of
facility types where a unit of facility m ∈ M provides capacity cm.
Depending on themodel, facilities are installed either on the edges
or on the arcs of the network and accordingly, we use c̄ ∈ RE or
c̄ ∈ RA to denote the existing capacities on the edges or arcs of the
network. Without loss of generality, we assume that cm ∈ Z for all
m ∈ M and c1 < c2 < · · · < c|M|. Let the demand data for the
problem be given by the square matrix T = {tij}, where tij ≥ 0 is
the amount of directed traffic that needs to be routed from node
i ∈ N to j ∈ N . Let K = {(ij) ∈ N × N : i ̸= j} and define the
|K | × |N| demand matrix D = {dku}, where

dku =

{ tij if u = j,
−tij if u = i,
0 otherwise,

for (ij) = k ∈ K and u ∈ N .

2. Undirected capacity model

In the undirected network design problem, the sum of the flow
on an arc and its reverse arc is limited by the capacity of the
undirected edge associated with the two arcs. This problem can be
formulated as follows:

min f (x, y)

s.t.
∑
j∈N+

i

xkij −
∑
j∈N−

i

xkji = dki , for k ∈ K , i ∈ N, (1)

∑
k∈K

xkij +
∑
k∈K

xkji ≤ c̄e +

∑
m∈M

cmym,e, for e = {i, j} ∈ E, (2)

x, y ≥ 0, y ∈ ZM×E, (3)
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where x and y denote the flow and capacity variables, respectively,
and f denotes the cost function. In most applications, the function
f can be decomposed as f (x, y) = f 1(x) + f 2(y) and, furthermore,
it is typically linear.

Let U(T ) denote the set of feasible solutions to inequalities (1)–
(3). A capacity vector ȳ accommodates traffic T if there exists a
feasible flow vector x such that (x, ȳ) ∈ U(T ). In other words, ȳ
accommodates T if ȳ ∈ projy(U(T )), where projy(·) denotes the
orthogonal projection operator onto the space of the y variables.
We say that two traffic matrices T and T̂ are pairwise similar if
tij + tji = t̂ij + t̂ji for all (ij) ∈ K . We next show that projy(U(T )) =

projy(U (̂T )) provided that T and T̂ are pairwise similar.

Lemma 1. Capacity vector y accommodates T if and only if it
accommodates all T̂ pairwise similar to T .

Proof. Let T and T̂ be pairwise similar. Consider a pair of nodes
u, v ∈ N with nonzero traffic, i.e., σ = tuv + tvu = t̂uv + t̂vu > 0.

Assuming y accommodates T , let x be a flow vector such that
(x, y) ∈ U(T ). Construct x̂ from x by letting all entries of x̂ corre-
sponding to k ∈ K \ {uv, vu} be same as that of x. Let α = t̂uv/σ .
For the remaining entries of x̂ associated with commodities uv and
vu, we set x̂uvij = α(xuvij + xvu

ji ) and x̂vu
ij = (1 − α)(xvu

ij + xuvji ) for all
(ij) ∈ A.

Notice that x̂vu
ij + x̂vu

ji + x̂uvij + x̂uvji = xvu
ij + xvu

ji + xuvij + xuvji
for all {i, j} ∈ E. Therefore, x̂ satisfies the capacity constraints
(2). In addition, x̂ also satisfies the flow balance constraints (1) as
d̂uvi = α(duvi + dvu

i ) and d̂vu
i = (1 − α)(duvi + dvu

i ) for all i ∈ N .
Repeating the same argument for the remaining pairs of nodes
proves the claim. □

Lemma 1 can also be shown using the metric inequalities as
done in [16].

Definition 1. An objective function f is called arc-symmetric if
f (x, y) = f (x̂, y) whenever

xvu
ij + xvu

ji + xuvij + xuvji = x̂vu
ij + x̂vu

ji + x̂uvij + x̂uvji

for uv, vu ∈ K and {i, j} ∈ E.

Lemma 2. Let T and T̂ be pairwise similar and f be arc-symmetric.
If (x, y) ∈ U(T ), then there exists (x̂, y) ∈ U (̂T ) such that f (x, y) =

f (x̂, y).

Proof. As in the proof of Lemma 1, it is possible to construct a flow
vector x̂ such that (x̂, y) ∈ U (̂T ). Furthermore, as x̂vu

ij + x̂vu
ji + x̂uvij +

x̂uvji = xvu
ij + xvu

ji + xuvij + xuvji for all (ij) ∈ A and the function is
arc-symmetric, the result follows. □

Given a traffic matrix T , we define its symmetric counterpart to
be T ∗

= (T + T T )/2. In other words, t∗uv = t∗vu = (tuv + tvu)/2. Also
note that T and T ∗ are pairwise similar. We have so far established
that optimizing an arc-symmetric cost function f over U(T ) is
equivalent to optimizing it over U(T ∗).

Lemma 3. Let f be an arc-symmetric function and T ∗ be a symmetric
matrix. If (x, y) ∈ U(T ∗), then there exists (x̂, y) ∈ U(T ∗) such that
x̂uvij = x̂vu

ji for all (ij) ∈ A and (uv) ∈ K . Furthermore, f (x, y) = f (x̂, y).

Proof. Let x̃ be such that x̃uvij = xvu
ji for all (ij) ∈ A and (uv) ∈ K .

As T ∗ is symmetric, (x̃, y) ∈ U(T ∗). Furthermore, by convexity,
defining x̂ = (x+x̃)/2we have (x̂, y) ∈ U(T ∗). In addition, x̂uvij = x̂vu

ji
for all (ij) ∈ A and (uv) ∈ K . Finally, as f is arc-symmetric and
x̂vu
ij + x̂vu

ji + x̂uvij + x̂uvji = xvu
ij + xvu

ji + xuvij + xuvji , for all (ij) ∈ A and
(uv) ∈ K , the claim holds. □

Let U=(T ) denote the set of feasible solutions (x, y) to con-
straints (1)–(3) together with the following equations

xuvij = xvu
ji for all (ij) ∈ A, (uv) ∈ K . (4)

Lemma 3 in conjunction with Lemma 2 establishes that when f
is an arc-symmetric function, optimizing f over U(T ) is same as
optimizing it over U=(T ∗).

Proposition 1. Let f be an arc-symmetric function, T be a traffic
matrix and let T ∗ be its symmetric counterpart. Then

min
(x,y)∈U(T )

f (x, y) = min
(x,y)∈U(T∗)

f (x, y) = min
(x,y)∈U=(T∗)

f (x, y).

Furthermore, given an optimal solution to any one of the problems,
optimal solutions to the other two can be constructed easily.

Furthermore, notice that if (4) holds, then∑
k∈K

xkij +

∑
k∈K

xkji = 2max
{∑

k∈K

xkij,
∑
k∈K

xkji
}

(5)

for all (ij) ∈ A. We next relate these observations on undirected
capacity models to network design problems with bidirected ca-
pacity constraints.

3. Bidirected capacity model

In the bidirected network design problem, the total flow on an
arc and total flow on its reverse arc are each limited by the capacity
of the undirected edge associatedwith these arcs. This problem can
be formulated as follows:

min f (x, y)

s.t.
∑
j∈N+

i

xkij −
∑
j∈N−

i

xkji = dki , for k ∈ K , i ∈ N, (6)

max
{∑

k∈K

xkij,
∑
k∈K

xkji
}

≤ c̄e +

∑
m∈M

cmym,e, for e = {i, j} ∈ E, (7)

x, y ≥ 0, y ∈ ZM×E . (8)

Let B(T ) be the set of feasible solutions (x, y) to inequalities (7)–(8).
We next show that if T is symmetric and (x, y) ∈ B(T ), then there
exists a flow vector x̂ such that (x̂, y) ∈ B(T ) and x̂ satisfies (4).
Furthermore if f is an arc-symmetric cost function, then f (x, y) =

f (x̂, y).

Lemma 4. Let f be an arc-symmetric function and T ∗ be a symmetric
matrix. If (x, y) ∈ B(T ∗), then there exists (x̂, y) ∈ B(T ∗) such that
x̂uvij = x̂vu

ji for all (ij) ∈ A and (uv) ∈ K . Furthermore, f (x, y) = f (x̂, y).

Proof. The proof is essentially identical to that of Lemma 3. First
we construct x̃ ∈ U(T ∗) by letting x̃uvij = xvu

ji for all (ij) ∈ A
and (uv) ∈ K . Then we define x̂ = (x + x̃)/2 and observe that
(x̂, y) ∈ U(T ∗) and that it satisfies the properties in the claim. □

Therefore, if T ∗ is a symmetric traffic matrix, then

min
(x,y)∈B(T∗)

f (x, y) = min
(x,y)∈B=(T∗)

f (x, y), (9)

where B=(T ∗) is the set of feasible solution (x, y) to constraints (6)–
(8) together with Eq. (4). We next show that optimizing an arc-
symmetric cost function over U(T ) is equivalent to optimizing a
slightly different function over B(2T ∗).

Proposition 2. Let f be an arc-symmetric function, T be a traffic
matrix and let T ∗ be its symmetric counterpart. Then

min
(x,y)∈U(T )

f (x, y) = min
(x,y)∈B(2T∗)

g(x, y),
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