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a b s t r a c t

Themax-cut problem is a much-studiedNP-hard combinatorial optimisation problem. Poljak and Turzik
found some facet-defining inequalities for this problem, which we call 2-circulant inequalities. Two
polynomial-time separation algorithms have been found for these inequalities, but one is very slow and
the other is very complicated. We present a third algorithm, which is as fast as the faster of the existing
two, but much simpler.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let G be an undirected graph, with vertex set V and edge set E.
For any S ⊆ V , the set of edges having exactly one end-vertex in S is
called an edge-cutset or simply cut. Given a weight we ∈ R for each
edge e ∈ E, the max-cut problem calls for a cut in G of maximum
total weight.

The max-cut problem is strongly NP-hard [13]. It has many
applications and has received much attention (see, e.g., [10,18]).
As present, the most successful exact algorithms for max-cut are
based on either linear programming (LP) or semidefinite program-
ming (SDP) relaxations (see, e.g., [4,23,25]). LP-based algorithms
can solve sparse instances with up to around 500 nodes, and SDP-
based ones can solve dense instanceswith up to around 150 nodes.

To construct strong LP relaxations of combinatorial optimisa-
tion problems, it helps to derive families of strong (preferably
facet-defining) valid linear inequalities (see, e.g., [7]). Several such
families have been derived for max-cut (see, e.g., [3,10]). In this
paper, we focus on some inequalities discovered by Poljak &
Turzik [24], which we call 2-circulant inequalities.

The separation problem for a given family of valid linear inequal-
ities is this: given a fractional solution to an LP relaxation of an
instance of the max-cut problem, either find an inequality in the
family that is violated by the fractional solution, or prove that no
such violated inequality exists (see, e.g., [7,16]). In [24], Poljak and
Turzik claimed (without proof) that the separation problem for
the 2-circulant inequalities (or more precisely a generalisation of
them) could be solved in polynomial time. Explicit algorithms for
this purpose were however discovered only later on [20,21].
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Unfortunately, the separation algorithm in [20] is very slow,
involving the solution of O

(
n2

)
very large LPs (where n = |V |).

The algorithm in [21] is faster, with a running time of O
(
n5

)
, but it

is very hard to implement. The purpose of this paper is to present
a third algorithm, which is much simpler than both of the other
algorithms, yet still runs in O

(
n5

)
time.

The paper has a simple structure: the literature is reviewed
in Section 2, the new algorithms are presented in Section 3, and
concluding remarks are made in Section 5. Throughout the paper,
we let Kn denote the complete undirected graph with vertex set
Vn = {1, . . . , n} and edge set En = {e ⊂ Vn : |e| = 2}. Given a
vector x ∈ [0, 1]En and an edge e = {i, j} ∈ En, we sometimes write
xij or x(i, j) instead of xe. We also assume that n ≥ 5 throughout the
paper, to avoid trivial cases.

2. Literature review

Now we review the literature. Due to space limitations, we
only review essential results, and refer the reader to [10,18] for
comprehensive surveys.

2.1. The cut polytope

By adding dummy edges of weight zero, if necessary, we can
work with the complete graph Kn. The max-cut problem can then
be formulated as the following 0-1 LP:

max
∑
e∈En

wexe

s.t. xij + xik + xjk ≤ 2 1 ≤ i < j < k ≤ n (1)
xij − xik − xjk ≤ 0 {i, j} ∈ En; k ∈ Vn \ {i, j} (2)

x ∈ {0, 1}En .
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Fig. 1. Representation of a 2-circulant inequality with c = 9.

Fig. 2. A 2-circulant with c = 7 contains a cut with (3c − 1)/2 = 10 edges. Nodes
in S represented by filled circles, others by hollow circles. Edges in δ(S) represented
by solid lines, others by dotted lines.

Here, xe takes the value 1 if and only if edge e lies in the cut. The
inequalities (1) and (2) are called triangle inequalities.

Barahona and Mahjoub [3] call the convex hull of feasible solu-
tions to the above 0-1 LP the cut polytope.Wewill denote it by CUTn.
They show that the triangle inequalities define facets of CUTn, along
with various other families of inequalities, including so-called odd
clique and odd bicycle wheel inequalities. Since then, a huge array
of valid and facet-defining inequalities has been discovered (see
Part V of [10]). We will be particularly interested in the following
inequalities, due to Poljak & Turzik [24]:

Proposition 1 (Poljak & Turzik, 1992 [24]). Let c be a positive integer
with 5 ≤ c ≤ n, and suppose that c is congruent to 1 modulo 4. Let
v1, . . . , vc be distinct vertices in Kn. The inequality

c∑
i=1

(
x
(
vi, vi+1

)
+ x

(
vi, vi+2

))
≤ 3(c − 1)/2 (3)

defines a facet of CUT n, where indices are taken modulo c.

We will call the inequalities (3) 2-circulant inequalities. Fig. 1
gives a graphical representation of a 2-circulant inequality with
c = 9. Small filled circles represent nodes, and edges represent
variables with a coefficient of one on the left-hand side.

A point that will be important later on (see Section 2.3) is that
2-circulant inequalities are not valid for CUTn when c is congruent
to 3 mod 4. Indeed, to make them valid in that case, it is necessary
to increase the right-hand side by one, to (3c − 1)/2 (see Fig. 2).
Moreover, the resulting inequalities are not of interest, since they
are easily shown to be implied by triangle inequalities.

We remark that the cut polytope is closely related to the so-
called Boolean quadric polytope, which is a polytope associatedwith
unconstrained quadratic programming in binary variables (see,
e.g., [2,8,10,22]). For brevity, we do not go into details, but simply
point out that our new separation algorithms can be easily adapted
to the Boolean quadric polytope.

2.2. Switching

An important operation, called switching, was also defined
in [3]. It states that, if the inequality λT x ≤ γ is valid (or facet-
defining) for CUTn, then the ‘switched’ inequality∑
e∈En\δ(S)

λexe −

∑
e∈δ(S)

λexe ≤ γ −

∑
e∈δ(S)

λe

is also valid (or facet-defining), for any S ⊂ Vn. As a simple
example, taking a triangle inequality of the form (1) and switching
on node k, we obtain a triangle inequality of the form (2). In a
similar way, one can construct switched odd clique, odd bicycle
wheel and 2-circulant inequalities.

2.3. Separation

Known results on exact separation algorithms include the fol-
lowing:

• Separation for the triangle inequalities (1), (2) can be solved
in O

(
n3

)
time by mere enumeration.

• More generally, separation for (switched) odd clique in-
equalities on k nodes, for a fixed odd k ≥ 3, can be solved by
enumeration in O

(
nk

)
time.

• Separation for the odd bicycle wheel inequalities can be
solved in O

(
n5

)
time [14]. The idea is to reduce the separa-

tion problem to
(n
2

)
minimum-weight odd cycle problems in

Kn−2, and then use the known fact [3,15] that theminimum-
weight odd cycle problem can itself be reduced to a series of
shortest (s, t)-path problems.

• The separation problem for a family of valid inequalities that
arises from an SDP relaxation of max-cut can be solved (to
arbitrary fixed precision) in polynomial time, by computing
the minimum Eigenvalue of a certain matrix [19]. The in-
equalities in question are however never facet-defining.

• One can separate in polynomial time over families of valid
inequalities that include not only all odd bicycle wheel
and 2-circulant inequalities, but also all of their switch-
ings [20,21]. The algorithm in [20] is based on lift-and-
project (see [1]), and involves the solution of

(n
2

)
LPs, each

with O
(
n3

)
variables and O

(
n2

)
constraints. The algorithm

in [21] is based on repeated applications of the covariance
map, along with arguments based on ‘‘{0, 1

2 }-cuts’’ (see [5]).
It runs in O

(
n5

)
time, but is very hard both to understand

and to implement.

Poljak & Turzik [24] noted (Remark 5.4, page 391) that
2-circulant inequalities remain valid even when the nodes
v1, . . . , vc are not all distinct, provided that vi ̸= vi+1 for i =

1, . . . , c. They also stated that the separation problem for the
resulting generalised 2-circulant inequalities could be transformed
to a minimum-weight odd cycle problem on a suitable graph, but
they did not give a proof. (Actually, we believe that such a trans-
formation is impossible, due to the fact that 2-circulant inequalities
are valid not when c is odd, but only when c is congruent to 1 mod
4.)

There are also several separation heuristics available for CUTn
and related polyhedra; see, e.g., [2,4,6,9,12,17]. For the sake of
brevity, we do not go into details.

3. The new separation algorithms

In this section, we describe our new separation algorithms.
Section 3.1 deals with the 2-circulant inequalities themselves,
whereas Section 3.2 deals with switched 2-circulant inequalities.
The inputs to both algorithms are an integer n ≥ 5 and a fractional
point x∗

∈ [0, 1]En that lies outside CUTn.
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