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a b s t r a c t

We study a simplistic model of instationary gas flows consisting of a sequence of k stationary gas flows.
We present efficiently solvable cases and NP-hardness results, establishing complexity gaps between
stationary and instationary gas flows (already for k = 2) as well as between instationary gas s-t-flows
and instationary gas b-flows.

© 2018 Published by Elsevier B.V.

1. Introduction

This paper studies the algorithmic complexity of time-varying
flows in gas transport networks. In the gas transport literature,
these flows are called instationary in contrast to stationary gas
flows that describe a steady state situation. This paper presents
efficiently solvable problems and identifies complexity gaps be-
tween stationary and instationary gas flows, as well as between
instationary gas flowswith a single source/sink andmulti-terminal
instationary gas flows. Our ultimate goal is to contribute to a better
understanding of the particular difficulty of instationary gas flows.
To this end, we introduce a simple model of instationary gas flows
in Section 3, and present an efficiently solvable instationary gas
flowproblem in Section 4, examples ofmore complicated scenarios
in Section 5, and finally an NP-hardness result in Section 6.

2. Stationary gas flows

Before turning to the more general case of instationary gas
flows, we introduce some basic facts about stationary gas flows.
In contrast to classical network flows where, within given capacity
bounds, flowmay be distributed throughout a network ad libitum,
gas flows are governed by the laws of physics. Essentially, in a gas
network the (stationary) flow along an arc (pipeline) is uniquely
determined by the pressures at the two endpoints of the arc. For
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an in-depth treatment of (stationary) flows in gas networks we
refer to the recent book [4]. The simplest andmost widely adapted
model for stationary gas flows is Weymouth’s equation [7]: For an
arc a = (u, v), the flow value xa along a satisfies

βaxa |xa| = πu − πv, (1)

where the node potentials πu = pu2 and πv = pv
2 are the squared

pressures at nodes u and v, respectively, and βa > 0 is a given
constant specifying the resistance of arc a. Here, a negative flow
value xa on arc a = (u, v) represents flow in the opposite direction
from node v to node u. This stationary gas flow model forms the
basis of this paper.

Consider a directed graph G with node set V and arc set A. For
given node balances b ∈ RV with

∑
v∈Vbv = 0, a stationary gas

flow satisfying supplies and demands given by b can be computed
by solving the following convex min-cost b-flow problem [2,5],

min
∑
a∈A

βa

3
|xa|3

s.t.
∑

a∈δout(v)

xa −

∑
a∈δin(v)

xa = bv ∀v ∈ V ,

(2)

where the objective function is chosen such that the resulting KKT
conditions yield Weymouth’s equations (1). The corresponding
dual program is

max
π

(∑
u∈V

buπu − 2
∑

(u,v)∈A

|πu − πv|
3/2

3
√

β(u,v)

)
. (3)
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Strong duality holds and the dual variables yield the node poten-
tials in (1) which are unique up to translation by an arbitrary value.
Problems (2) and (3) can be solved efficiently within arbitrary
precision.

Throughout this paper, we assume that there are uniform
bounds on all node potentials given by an interval [πmin, πmax]. A
stationary gas flow xwith corresponding node potential π ∈ RV is
feasible if πmin ≤ πv ≤ πmax for all v ∈ V . We state an important
theorem on stationary gas flows, which essentially follows from
the work of Calvert and Keady [1] (see also [3]), and for which we
give a short proof for the sake of completeness.

Theorem 1 ([1]). Consider a network with source s, sink t, and
potential interval [πmin, πmax]. If βa ≥ β ′

a > 0 for all a ∈ A,
then the value of a maximal feasible stationary gas s-t-flow for arc
resistances β is at most the value of a maximal feasible stationary gas
s-t-flow for arc resistances β ′.

Proof. For some s-t-flow value B = bs = −bt ≥ 0 (and bv = 0
for v ∈ V \ {s, t}), consider the primal problem (2) and the dual
problem (3). By combining (3), (1), and (2), the value z∗ of an
optimal solution (x∗, π∗) satisfies

z∗
=

∑
v∈V

bv π∗

v − 2
∑
a∈A

βa

3
|x∗

a |
3
=B (π∗

s − π∗

t ) − 2z∗,

and thus π∗
s −π∗

t = 3z∗/B. Notice that π∗
s ≥ π∗

v ≥ π∗
t for all v ∈ V

due to (1). In particular, there is a feasible stationary gas s-t-flow
of value B if and only if 3z∗/B ≤ πmax − πmin (note that the dual
solution π∗ is unique up to translation). As the optimal value z∗

of (2) is an increasing function of the arc resistances βa, a ∈ A,
the existence of a feasible stationary gas s-t-flow of value B for
arc resistances β thus implies the existence of such a flow for arc
resistances β ′

≤ β . □

3. A simple instationary gas flow model

We introduce amodel of instationary gas flows that,while being
simple enough to allow for a theoretical analysis, still captures
essential characteristics and exhibits interesting properties. In par-
ticular, we prove meaningful results that constitute an interesting
first step in explaining the increased difficulty of instationary ver-
sus stationary gas flows.

For k ∈ Z>0, a k-stage gas flow x is a k-tuple (x1, . . . , xk) of
stationary gas flows (where we interpret x1, . . . , xk as a temporal
succession). If xi satisfies supplies and demands bi ∈ RV , i =

1, . . . , k, then x in total satisfies supplies and demands b = b1 +

· · ·+bk ∈ RV and is called k-stage gas b-flow. For two distinguished
nodes s, t ∈ V , x is a k-stage gas s-t-flow of value q if it satisfies
supplies and demands b ∈ RV with bs = −bt = q and bv = 0 for
v ∈ V \ {s, t}. A k-stage gas flow x is called stationary if x1 = · · · =

xk, otherwise x is called instationary. Finally, a k-stage gas flow x is
feasible if x1, . . . , xk are feasible stationary gas flows.

Remark 2. Notice that, in marked contrast to actual gas transport,
in our model there is no correlation between consecutive flows xi
and xi+1.Moreover, themodel allows to arbitrarily buffer or borrow
flow in each node (i.e., flow may be withdrawn or injected at each
node) at each stage as long as the accumulated node balances b1 +

· · · + bk add up to the desired b (cp. examples in Section 5).

We study the following two algorithmic problems for k ∈

Z>0: first, the maximum k-stage gas s-t-flow problem, whose input
is a network G with source s ∈ V , sink t ∈ V , and interval
[πmin, πmax], and the task is to find a feasible k-stage gas s-t-flow
of maximum value; second, the k-stage gas b-flow problem, whose
input is a network Gwith supplies and demands b ∈ RV , as well as

interval [πmin, πmax], and the task here is to find a feasible k-stage
gas b-flow.

4. Maximum 2-stage gas s-t-flows

We first show that there exists an efficiently computable sta-
tionary maximum 2-stage gas s-t-flow.

Theorem 3. Taking two copies of the maximum feasible stationary
gas s-t-flow yields an optimal solution to the maximum 2-stage gas
s-t-flow problem.

Consider a feasible 2-stage gas s-t-flow (x1, x2) with node po-
tentials π1, π2

∈ RV . By definition, the flow x̃ :=
1
2 (x

1
+ x2) is

an s-t-flow (not necessarily a stationary gas flow induced by node
potentials π , though), and the value of the feasible 2-stage gas s-t-
flow (x1, x2) is exactly twice the value of x̃.

Lemma 4. The node potentials π̄ :=
1
2 (π

1
+ π2) induce a feasible

stationary gas flow x̄ with sgn(x̄a) = sgn(x̃a) and |x̄a| ≥
⏐⏐x̃a⏐⏐ for

each a ∈ A.

Proof. By definition of x̄ and xi, i = 1, 2, we have

x̄a = sgn(π̄u − π̄v)
√

|π̄u − π̄v|/
√

βa,

xia = sgn(π i
u − π i

v)
√⏐⏐π i

u − π i
v

⏐⏐/√βa,

for each arc a = (u, v) ∈ A. Moreover, by definition of π̄ , we get
π̄u − π̄v =

(
(π1

u − π1
v ) + (π2

u − π2
v )

)
/2. The lemma thus follows

from the next observation. □

Observation 5. Consider the function f : R → R with f (σ ) =

sgn(σ )
√

|σ |. Then, for all σ 1, σ 2
∈ R,

sgn
(
f
(σ 1

+ σ 2

2

))
= sgn

(
f (σ 1) + f (σ 2)

2

)
,⏐⏐⏐f (σ 1

+ σ 2

2

)⏐⏐⏐ ≥

⏐⏐⏐⏐ f (σ 1) + f (σ 2)
2

⏐⏐⏐⏐.
Proof. Notice that f (−σ ) = −f (σ ) for all σ ∈ R (in particular,
f (0) = 0), and f |R≥0

is non-negative, strictly increasing, and
concave. Therefore the statement is clear for the cases that σ 1

and σ 2 are both non-negative or both non-positive.
It remains to consider the case σ 1 < 0 < σ 2. The equality state-

ment on the signs is an immediate consequence of f ’s properties
noted above. By symmetry we may assume that

⏐⏐σ 1
⏐⏐ ≤ σ 2 such

that 1
2 (σ

1
+ σ 2) ≥ 0 and thus f

( 1
2 (σ

1
+ σ 2)

)
≥ 0. By concavity of

f |R≥0
, we get two inequalities:

f
(σ 1

+ σ 2

2

)
≥

f (0) + f (σ 1
+ σ 2)

2
=

f (σ 1
+ σ 2)
2

,

f (σ 1
+ σ 2) − f (σ 1) = f (−

⏐⏐σ 1
⏐⏐ + σ 2) + f (

⏐⏐σ 1
⏐⏐)

≥ f (σ 2) + f (0) = f (σ 2).

The latter inequality implies that f (σ 1
+ σ 2) ≥ f (σ 1) + f (σ 2). To-

gether with the former inequality this yields the desired result. □

It follows from Lemma 4 and (1) that by increasing the βa values
individually for each arc a ∈ A, we arrive at a network where
the s-t-flow x̃ is a feasible stationary gas s-t-flow induced by the
node potentials π̄ :=

1
2 (π

1
+ π2). More precisely, we need to set

β̃a := βax̄2a/x̃
2
a ≥ βa. Thus, by Theorem1, the value of the stationary

maximal feasible gas s-t-flow x∗ in the network with original arc
resistances β is at least the value of x̃, which is half the value of our
feasible 2-stage gas s-t-flow (x1, x2). Summarizing, the value of the
feasible 2-stage gas s-t-flow (x∗, x∗) is at least the value of (x1, x2).
This concludes the proof of Theorem 3.
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