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Abstract

In second-order algorithms, we investigate the relevance of the constant
rank of the full set of active constraints in ensuring global convergence to
a second-order stationary point under a constraint qualification. We show
that second-order stationarity is not expected in the non-constant rank
case if the growth of so-called tangent AKKT2 sequences is not controlled.
Since no algorithm controls their growth, we argue that there is a theo-
retical limitation of algorithms in finding second-order stationary points
without constant rank assumptions.
Keywords: Global convergence, Second-order algorithms, Constant rank,
Constraint qualification, Second-order optimality conditions

1 Introduction

In this paper we are interested in optimality properties of limit points of se-
quences generated by numerical algorithms, that is, global convergence results.
Let us assume that x∗ is a feasible limit point of a sequence {xk} generated by
an unspecified first-order numerical algorithm. It is well known that assuming
that x∗ satisfies some constraint qualification is not enough to ensure that x∗

is a Karush-Kuhn-Tucker (KKT) point. Some specific constraint qualification,
what has been called a strict one in [4], is needed. Similarly, if the algorithm
is a second-order one, the Weak Second-order Optimality Condition (WSOC),
the standard necessary optimality condition based on the critical subspace, can
usually be proved at x∗ under a constraint qualification stronger than what is
needed to prove that WSOC is necessary at a local minimizer (see [8]).

In this sense, there is an intrinsic theoretical gap between the types of prob-
lems in which local solutions are known to be KKT or WSOC points, and the
attainability of such points by a numerical algorithm. There is also a gap in the
sense that the second-order optimality condition can be theoreticaly refined to
consider a larger set of directions, namely, the critical cone, in which the critical
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