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a b s t r a c t

This paper investigates the robust optimal pairs trading using the concept of equivalent probability
measures and a penalty function associated with the confidence in parameter estimates when the
parameters in the drift term of the continuous-time cointegration model are estimated with errors. A
closed-form solution is derived for the robust pairs trading rule. We compare the robust pairs trading
rule against its non-robust counterpart using simulations and real data. The robust strategy is empirically
more stable and less volatile.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Pairs trading is an appealing statistical arbitrage strategy in the
practical financial market. It attempts to take profit from short-
term departure of financial assets which share a common long-
term equilibrium. A popular way to identify the relevant assets
and the long-term equilibrium uses the concept of cointegration
that originated in [10]. Using this 2003 Nobel prize framework,
the studies in [1] and [2] pioneer the rigorous investigation of
cointegration techniques in active portfolio management. Other
applications of cointegration in asset pricing include derivative
pricing and commodity pricing in [9] and [8].

The analytic tractability of the continuous-time cointegration
model facilitates the theoretical development of optimal pairs
trading strategies. The mean–variance pairs trading rules are de-
rived for banks [4], insurance companies [5] and firmswith liability
[6]. The optimal pairs trading in [18] is based on maximizing the
expected constant relative risk aversion (CRRA) utility. The study
of [24] considers the expected constant absolute risk aversion
(CARA) utility. Cointegration is also useful for longevity risk man-
agement using the optimal portfolio approach as shown in [26]
and [27]. Kwok et al. [15] apply cointegration to longevity security
demand under relative performance concerns. Chiu and Wong [7]
mathematically prove the statistical arbitrage feature of cointegra-
tion market in the sense of [13], once all of the model parameters
in the cointegration model are perfectly known in advance.

The actual profitability of pairs trading is, however, subject to
many practical issues. Lei and Xu [17] show that the statistical
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arbitrage through pairs trading could be costly. They numerically
characterize the trading and non-trading regions for a pair of
assets with a specific cointegration structure subject to propor-
tional transaction costs anddemonstrate empirically that the profit
is much reduced for the existence of transaction costs. Another
practical issue is the estimation errors of parameters in the coin-
tegration model. The finance literature has reported the distortion
of empirical optimal portfolio performance by estimation errors.
A remedy to reduce the effect of parameter uncertainty uses the
robust policy of [14] and [19], so that investment decision is made
under the worst case among scenarios characterized by a set of
equivalent probability measures. Therefore, the classic expected
utility maximization is replaced by a maximin problem. Although
such an approach has been applied to diffusion processes with
deterministic drifts ([28] and [22]), the corresponding theoretical
treatment for the cointegration is yet to be considered.

Recently, the uncertainty of the mean reversion level in coin-
tegration for portfolio optimization is considered in [16] using
the formulation of partial information. Ours using the framework
of [19] is significantly different from [16]. The authors of [16]
consider the worst-case scenario over an interval for the mean
reversion level, but we consider a set of equivalent probability
measures and a penalty function associatedwith the confidence on
parameter estimates. The empirical use of our framework can be
realized through data-driven cross-validation or machine learning
techniques in selecting the penalty function. The partial informa-
tion setting does not have such a feature. In addition, we extend
the framework of [20] on zero-sum stochastic differential games
to establish a verification theorem for the approach of [19] under
cointegration models.

The remainder of the paper is organized as follows. Section 2
reviews the cointegration model and introduces the robust pairs
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trading problem with cointegration subject to parameter estima-
tion errors. Section 3 derives the robust optimal solution for CARA
investors whose utility functions are exponential functions.1 Sec-
tion 4 compares the features of the classical and the robust solu-
tions subject to estimation error through a series of simulations.
The comparison is based on various performance measures such
as profitability, risk and objective function value. Section 5 offers
an empirical study to show the advantage of the robust approach
with real data, Concluding remarks are made in Section 6.

2. Problem formulation

2.1. Cointegration model

By Granger’s representation theorem [12], the cointegrated
vector time series can be expressed as an error correction model
(ECM). In a discrete-timemodelwith constant parameters, an error
correction dynamic for the n-component asset price time series
with k (1 ≤ k ≤ n) cointegrating factors is defined as follows:
ln Si,t − ln Si,t−1 = µi +

∑k
j=1δijzj,t−1 +

∑n
j=1σij,tϵj,t with i =

1, . . . , n, where zj,t = aj + bjt +
∑n

i=1cij ln Si,t for j = 1, . . . , k,
Si,t is the price of asset i at time t for i = 1, . . . , n, (c1j, . . . , cnj) are
linearly independent vectors for j = 1, . . . , k, and [ϵ1,t , . . . , ϵn,t ]

is a vector of independent identically distributed (i.i.d.) standard
normal random variables. In the error correctionmodel, the vector
of k cointegrating factors, [z1,t , . . . , zk,t ], should be a stationary
time series such that each zj,t has a bounded variance at all time
points.

To bettermotivate our problem formulation, consider two coin-
tegrated assets with one cointegrating factor. The estimation of
ECM involves the ordinary least squares (OLS) method that esti-
mates the parameters a, b and c through ln S1,t = a+bt+c ln S2,t −
zt , where zt is the noise term in the OLS. If the time series of {zt}
is tested to be stationary, then zt = a + bt + c ln S2,t − ln S1,t
is the cointegration relationship. After the estimation, a simple
strategy constructs a long-short portfolio based on ĉ ln S2,t − ln S1,t
and determines the optimal allocation between the portfolio and
the bank account based on the departure level to its long-term
equilibrium trend which is related to b̂, ĉ and the volatility of zt ,
see [25].

Stock [23] shows that the OLS estimate of ĉ is super consistent
in the sense that it converges to the true value in an order of 1

N
whereas other estimators â and b̂ are only consistent estimators
converging in an order of 1

√
N
for a sample size N . In other words,

the estimation error for ĉ is not serious compared to those of â and
b̂. Therefore, this study focuses on reducing the effect of estimation
error in µ in the general ECM in ln S1,t = a+ bt + c ln S2,t − zt ,. To
gain analytic tractability, we use a continuous-time ECM.

2.2. Continuous-time model

In a continuous-time economy, the cointegration model is the
diffusion limit of the discrete-time ECM [9]:

d ln Si,t =

⎛⎝µ +

k∑
j=1

δijzj,t

⎞⎠ dt +

n∑
j=1

σijdWj,t , i = 1, . . . , n, (1)

zj,t = aj + bjt +

n∑
i=1

cij ln Si,t j = 1, . . ., k, (2)

where Wi,t , i = 1, . . . , n are independent standard Wiener pro-
cesses. To reflect the spirit of the error correction model in its

1 Mathematical proofs are collected in the on-line appendix: www.sta.cuhk.edu.
hk/hywong/orl2018appendix.pdf.

diffusion limit, when k = 1, z1,t follows the Ornstein–Uhlenbeck
process [9], dz1,t =

(
µ1 − αz1,t

)
dt + σz,1 dŴ1,t , where µ1 is a

real constant, and α and σ1 are positive constants. In general, the
vector of k cointegrating factors, zt = [z1,t , . . . , zk,t ], satisfies the
stochastic differential equation (SDE): dzt = (µz − J · zt) dt +

σzdŴt , where J is a k × k positive diagonal Jordan matrix for a
cointegration system, σzσ

′
z is a positive definite matrix of size k,µz

is a k dimensional vector, and Ŵt is a vector of independentWiener
processes induced from (2). Specifically, µz = b + Cµ, J = Cδ
and CσdW = σzdŴt in distribution, where b = [bj] ∈ Rk, µ =

[µj] ∈ Rn, C = [cij] ∈ Rk×n, σ = [σij] ∈ Rn×n, σz ∈ Rk×k and
δ = [δij] ∈ Rn×k.

To simplify the notation, we substitute (2) into (1) and write
d ln St = (θ − A · ln St) dt + σdWt , where ln St is a vector that
contains the log prices of n assets, θ is an n-dimensional vector,
Wt is a vector of uncorrelated Wiener processes, σσ ′ represents
the n × n variance–covariance matrix, and A is n × n coefficient
matrix of cointegration. Specifically, θ = µ + δ(a + bt) ∈ Rn,
A = δC ∈ Rn×n and σ = [σij] ∈ Rn×n.

2.3. The financial market

With the notion of cointegration in mind, we consider a fi-
nancial market in which n + 1 assets are traded continuously
within the time horizon [0, T ]. These assets are labeled by Si for
i = 0, 1, 2 . . . , n, with the 0th asset being risk-free. The risk-free
asset satisfies the differential equation, dS0(t) = (t)S0(t)dt, with
S0(0) = R0 > 0, where r(t) is the time deterministic risk-free
rate. The risky assets are defined through their log-price processes
X1(t), . . . , Xn(t), where Xj(t) = ln Sj(t). The vector of log-prices,
X(t), satisfies the SDE

dX(t) = [θ (t) − AX(t)] dt + σ (t)dWt , t ∈ [0, T ], (3)

whereWt = (W 1
t , . . . ,W n

t )
′ is a standard Ft≥0-adapted n-dimens-

ionalWiener process on a fixed filtered complete probability space
(Ω,F,P,Ft≥0),W i

t andW j
t are mutually independent for all i ̸= j,

A is an n × n constant matrix of cointegration coefficients, and
σ (t)σ (t)′ := Σ(t) is the covariance matrix of assets defined in the
Banach space of Rn×n-valued continuous function on [0, T ]. In line
with the literature, we assume that the non-degeneracy condition
of Σ(t) ≽ δIn holds for all t ∈ [0, T ] and for some δ > 0. We also
assume that θ (t) and σ (t) are measurable and uniformly bounded
in [0, T ].

2.4. Robust optimal investment

Consider an investor with an initial wealth of Y0 in the specified
financial market with cointegration. The investor seeks an admis-
sible portfolio strategy so that the expected utility of the terminal
wealth level ismaximized. Let ui(t) be the amount invested in asset
i andNi(t) be the number of shares of the ith asset in the portfolio of
the investor. The wealth of the investor at time t is then defined as
Y (t) =

∑n
i=0ui(t) =

∑n
i=0Ni(t)Si(t). Applying Itô’s lemma to Y (t)

with respect to the cointegrating dynamics (3), the wealth process
is given by

dY (t) =
[
r(t)Y (t) + u(t)′B(t)

]
dt + u(t)′σ (t)dWt , (4)

with Y (0) = Y0, where

B(t) = θ − AX(t) +
1
2
D(σ (t)σ (t)′)1 − r(t)1, (5)

in which 1 is the column vector with all elements being 1, D(σ (t)
σ (t)′) is the diagonal matrix with all diagonal elements equal to
those of σ (t)σ (t)′.

The classical utility maximization problem with a fixed in-
vestment horizon T < ∞ reads maxu(·)E [U(Y (T ))] subject to
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