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a b s t r a c t

Starting from the paper by Nash and Sofer (1990), we propose a heuristic adaptive truncation criterion
for the inner iterations within linesearch-based truncated Newton methods. Our aim is to possibly
avoid ‘‘over-solving’’ of the Newton equation, based on a comparison between the predicted reduction
of the objective function and the actual reduction obtained. A numerical experience on unconstrained
optimization problems highlights a satisfactory effectiveness and robustness of the adaptive criterion
proposed, when a residual-based truncation criterion is selected.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider the unconstrained optimization prob-
lem

min f (x), (1)

where f : Rn
−→ R is a real valued function possibly nonconvex,

and n is large.We consider the standard assumptions that f is twice
continuously differentiable, and that for a given x0 ∈ Rn the level
set Ω0 = {x ∈ Rn

| f (x) ≤ f (x0)} is compact.
Truncated Newton methods are widely used for solving such

problems. They are also called Newton–Krylov methods since a
Krylov subspace method is usually employed, for approximately
solving the Newton equation at each iteration. A general descrip-
tion of the truncated Newton methods can be found in the survey
paper [17]. Now we briefly recall the main features of this class
of methods. In the sequel, we denote by fk = f (xk), gk = ∇f (xk)
and Hk = ∇

2f (xk) respectively the function, the gradient and the
Hessian matrix of the function f at the point xk. Moreover, we do
not assume any sparsity pattern for Hk.

It is well known that, given an initial guess x0 of a local min-
imizer of problem (1), a truncated Newton method is based on
two nested loops: the outer iterations which represent the actual
steps of the method, where the current estimate of the solution is
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updated; the inner iterationswhich carry out an iterative algorithm
for computing, at each outer iteration k, a search direction dk by
approximately solving the Newton equation

Hkd = −gk. (2)

The iterative algorithm used for solving (2) is actually ‘‘truncated’’,
i.e. terminated before the exact solution is obtained. This strategy
is based on the fact that, since the benefits of using a Newton
direction are local, i.e. in the neighborhood of a stationary point,
an accurate solution of (2) may be unjustified when xk is far from
a local optimizer. As matter of fact, in this case, a much simpler
search direction can often perform comparably well. Instead, more
accuracy is required when the iterates approach a local minimizer.
A good trade-off between the accuracy in solving the Newton
equation (2) and the computational effort employed per outer
iteration is a key point, for the overall efficiency of a truncated
Newton method. Indeed, there might be significant advantages to
terminating the inner iterations early, when we are still far from
a solution and the problem has significant nonlinearities. On the
contrary, when close to a solution, there may be disadvantages to
early terminating, inasmuch as the corresponding search direction
dk might be poor.

Since the early papers [4,5] where truncated Newton methods
were introduced, the importance of an efficient truncation crite-
rion for the inner iterations was pointed out. The stopping rule
proposed therein is based on controlling the magnitude of the
residual. Under suitable assumptions, this allows to guarantee local
convergence and a good convergence rate. Another truncation rule
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has been proposed in [19]. It is based on a comparison between
the reduction of the quadratic model of the objective function, at
the current iteration, and the average reduction per iteration of the
model.

The proper choice of a suitable truncation criterion, along with
the necessity to handle the indefinite case (see also [8]) and the
choice of an effective preconditioning strategy, are three ‘‘open
questions’’ within truncated Newton frameworks, listed in the
early survey paper [21]. In subsequent years, even if the research
activity on these topics was greatly developed, actually no defini-
tive answer has been yet provided.

Another fundamental aspect of a truncated Newton method
concerns the global convergence. Indeed, as well known, a global-
ization strategy must be adopted to this aim, i.e. the method must
be embedded within a linesearch or a trust region framework.

On the basis of these remarks, in this paper we propose a
simple adaptive truncation criterion for the inner iterations within
a linesearch-based truncated Newton method, and analyze its ef-
fectiveness in both the unpreconditioned and the preconditioned
case. Our aim is to define an additional rule which enables to avoid
‘‘over-solving’’ of the Newton equation (2) in some circumstances.
The latter phenomenon occurs whenever unnecessary inner it-
erations are performed, so that indulging in solving the Newton
equation does not produce a better search direction. This possibly
yields a reduction of the overall inner iterations, for both convex
and nonconvex problems. Our proposal is partially inspired by
trust region approach (see e.g. [3]), and is based on a comparison
between the reduction of the objective function predicted by the
quadratic model, and the actual reduction obtained. In particular,
we consider a linesearch–based truncated Newton method where
the inner iterations are performed using the Conjugate Gradient
(CG) algorithm. A numerical experience was carried on for a se-
lection of large scale (convex and nonconvex) test problems from
CUTEst collection [11], showing the satisfactory effectiveness and
the robustness of the adaptive rule proposed, when the residual-
based criterion is adopted. For the sake of brevity, we only report
a few significant summary results. The complete numerical results
are detailed in the companion paper [1].

The paper is organized as follows: in Section 2 the two com-
monest truncation criteria used in the literature are reported and
discussed. Section 3 reports some introductory theoretical motiva-
tionswhich are at the basis of our proposal. The novel adaptive rule
is introduced in Section 4 and a summary of the numerical testing
is reported in Section 5. Finally, Section 6 reports some concluding
remarks. As regards the notations, ∥v∥ denotes the 2-norm of the
vector v ∈ Rn.

2. Common truncation criteria

In order to briefly recall the truncation criteria commonly used
in the literature, we denote by dk an approximate solution of (2),
and by rk = Hkdk + gk the corresponding residual.

A natural stopping criterion for the inner iterations is the
residual-based criterion, proposed in the seminal papers [4] and [5].
Indeed, the authors propose to terminate the inner iterations
whenever the residual rk is sufficiently small, namely
∥rk∥
∥gk∥

≤ ηk, (3)

for a specified value of ηk. It is well known that criterion (3) is
scale invariant and that the choice of the forcing sequence {ηk} is
crucial for controlling the convergence rate of the algorithm. A
widely used choice proposed in [5] is ηk = min{1/k, ∥gk∥r

}, with
0 < r ≤ 1. Other forcing sequences have been proposed later in [6]
and [7]. The possibility to easily control the rate of convergence of
the algorithm, bymeans of suitable choices of the sequence {ηk}, is

a key point for this criterion. On the other hand, some drawbacks
deriving from the adoption of this rule are well known. Indeed, at
the jth inner iteration of the Krylov subspace method adopted for
solving theNewton equation (2), a stationary point of the quadratic
model

qk(d) =
1
2
dTHkd + gT

k d (4)

over the Krylov subspace

Kj(Hk, gk) = span
{
gk,Hkgk,H2

k gk, . . . ,H
j−1
k gk

}
is sought. In the case of positive definite Hessian Hk, the quadratic
model (4) has a global minimizer which exactly solves the Newton
equation (2). Of course, this case corresponds to a null residual.
Conversely, whenever an approximate solution is sought,monitor-
ing the magnitude of the residual might be, as discussed in [19],
misleading. Indeed, the actual decrease of the objective function
values can be alternatively predicted by means of the quadratic
model decrease; however, themagnitude of the residual rk and the
quadratic model qk(dk) could be significantly different. Moreover,
the rounding error in computing ∥rk∥ could be relevant since rk
is usually computed by recurrence. In addition, whenever a CG
method is used in the inner iterations and Hk is positive definite,
the quadratic model monotonically decreases as the inner itera-
tions progress, while the sequence {∥rk∥} is not monotone (unlike,
for instance, using MINRES).

These remarks induced the authors to propose in [19] also a
truncation rule based on the decrease of the quadratic model, rather
than considering only the residual. Namely, the truncation crite-
rion proposed is the following: the inner iterations are terminated
if, for a specified value of ηk ∈ (0, 1),
qk(dj) − qk(dj−1)

qk(dj)
j

≤ ηk, (5)

where dj denotes the approximate solution of (2) at the jth inner
iteration. This criterion is then based on the comparison between
the reduction of the quadratic model qk(dj) − qk(dj−1), and the
average reduction per iteration qk(dj)/j. The criterion (5) is often
considered preferable to (3) , since it gains information directly
from the values of the quadratic model. Moreover, in [9] it was
extended to possibly consider also an indefinite HessianmatrixHk,
providing some theoretical results, too.

However, in the framework of truncated Newton methods, in
unconstrained as well as in constrained optimization, some codes
currently available on theweb and commonly used by the optimiz-
ers community still adopt the residual-based truncation criterion
(3), bothwithin linesearch-based and trust region-based codes (see
e.g. [2,13], [15] page 9, [12,22–24] and URL https://neos-guide.
org/content/truncated-newton-methods). This might be due also
to the fact that, as well known, the adoption of (3) ensures the-
oretical superlinear convergence. Conversely, the criterion based
on the quadratic model reduction (5), with the suggested value of
ηk = 0.5 (constant), guarantees only the theoretical linear rate of
convergence [19], even if it works very efficiently in practice.

On the basis of these remarks, in this paper we focus on the
possibility to ‘‘enrich’’ the residual-based criterion (3) by convey-
ing, also in this case, information gained from the behavior of
the quadratic model. To this aim, we propose an adaptive rule
for deciding the maximum number of inner iterations allowed at
each outer iteration. The latter rule combined with the criterion
(3) should enhance the overall efficiency of a truncated Newton
method, by possibly avoiding the over–solving phenomenon.

3. Motivation for the truncation rule

Both the stopping criteria (3) and (5) in the previous section
may not prevent over-solving of the Newton equation. For the

https://neos-guide.org/content/truncated-newton-methods
https://neos-guide.org/content/truncated-newton-methods
https://neos-guide.org/content/truncated-newton-methods


Download English Version:

https://daneshyari.com/en/article/7543884

Download Persian Version:

https://daneshyari.com/article/7543884

Daneshyari.com

https://daneshyari.com/en/article/7543884
https://daneshyari.com/article/7543884
https://daneshyari.com

