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Abstract

In this paper, we study a data-driven risk-averse stochastic optimization approach with Wasserstein
Metric for the general distribution case. By using the Wasserstein Metric, we can successfully reformulate
the risk-averse two-stage stochastic optimization problem with distributional ambiguity to a traditional
two-stage robust optimization problem. In addition, we derive the worst-case distribution and perform
convergence analysis to show that the risk aversion of the proposed formulation vanishes as the size of
historical data grows to infinity.
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1 Introduction

The traditional two-stage stochastic optimization problem can be described as follows (cf. [3] and [15]):

(SP) minx∈X c>x+ EP[Q(x, ξ)],

where the first-stage decision variable x is in a compact set X and the second-stage problem is

Q(x, ξ) = min
y∈Y
{d(ξ)

>
y : A(ξ)x+By ≥ b(ξ)}, (1)

where Q(x, ξ) is assumed continuous on ξ (e.g., when A(ξ) and b(ξ) are continuous on ξ) and the uncertain
random variable ξ is defined on a probability space (Ω,F ,P), in which Ω is a compact convex sample space
for ξ, F is a σ-algebra of Ω, and P is the associated given true probability distribution. SP has broad
applications. However, there are challenges. For instance, in practice, the true distribution of the random
parameters is usually unknown and hard to predict accurately and the inaccurate estimation of the true
distribution may lead to biased solutions and make the solutions sub-optimal. Meanwhile, there are usually
a series of historical data available for the unknown true distribution. To incorporate distribution ambiguity
and utilize the historical data, we consider a data-driven risk-averse stochastic optimization formulation:

(DD-SP) minx∈X c>x+ max
P̂∈D

EP̂[Q(x, ξ)],

where P̂ represents an unknown distribution in the given confidence set D. This formulation allows distribu-
tion ambiguity and introduces a confidence set D to ensure that the true distribution P is within this set with
a certain confidence level based on nonparametric statistics. In general, if we let dM(P0, P̂) be any distance

measure between a reference distribution P0 and an unknown distribution P̂ and use θ, as a function of the
size of historical data, to represent the corresponding distance, then the confidence set D can be represented
as follows:

D = {P̂ : dM(P0, P̂) ≤ θ}.
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