
Operations Research Letters 46 (2018) 76–80

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Minimizing the sum of linear fractional functions over the cone of
positive semidefinite matrices: Approximation and applications
Yong Xia a,*, Longfei Wang a, Shu Wang b

a State Key Laboratory of Software Development Environment, LMIB of the Ministry of Education, School of Mathematics and System Sciences, Beihang
University, Beijing, 100191, PR China
b College of Science, North China Institute of Science and Technology, Hebei, 065201, PR China

a r t i c l e i n f o

Article history:
Received 14 March 2017
Received in revised form 13 November
2017
Accepted 13 November 2017
Available online 22 November 2017

Keywords:
Fractional programming
Semidefinite programming
Rayleigh quotient
Total least squares
FPTAS

a b s t r a c t

The problem of maximizing the sum of two generalized Rayleigh quotients and the total least squares
problem with nonsingular Tikhonov regularization are reformulated as a class of sum-of-linear-ratios
minimizing over the cone of symmetric positive semidefinite matrices, which is shown to have a Fully
Polynomial Time Approximation Scheme.
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1. Introduction

Consider the following linear fractional optimization over the
cone of symmetric positive semidefinite matrices:

(FSDP) min g(X) :=

p∑
i=1

tr(AiX)
tr(BiX)

(1)

s.t. X ∈ Ω := {X | X ⪰ 0,
tr(CjX) ≤ dj, j = 1, . . . ,m}, (2)

where Ai ≻ 0, Bi ≻ 0 for i = 1, . . . , p, Cj ∈ Rn×n, dj ∈ R
for j = 1, . . . ,m, the notation (·) ≻ (⪰)0 indicates that (·) is
symmetric positive (semi)definite, and tr(·) denotes the trace of (·).

The well-known Rayleigh–Ritz theorem on the equivalence be-
tween the minimum of Rayleigh quotient and the smallest eigen-
value of a symmetric matrix can be regarded as a special case of
(FSDP) with p = 1:

λmin(A) = min
x̸=0

xTAx
xT x

= min
0̸=X⪰0

tr(AX)
tr(X)

.

(FSDP) includes the classical semidefinite programming
(SDP) [18,19] as special cases by setting Ω ⊆ {X | tr(BiX) =
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1, i = 1, . . . , p}. We notice that (SDP) can be solved in polynomial
time, see, for example, [5]. Moreover, when p = 1, applying the
Charnes–Cooper transformation [4], (FSDP) can be equivalently
reformulated as an SDP. For such an example of standard fractional
quadratic problem, we refer to [1]. This is not surprise as the
single linear ratio is pseudo-convexity and then any KKT solution
of (FSDP) is a global minimizer.

When all Ai, Bi, Cj are diagonal matrices and Ω ⊆ {X | Xn,n =

1}, (FSDP) reduces to the following linear fractional programming
problem:

(FLP) min
x≥0,Diag(x;1)∈Ω

p∑
i=1

aTi x + a0i
bTi x + b0i

, (3)

where (ai; a0i) = diag(Ai), (bi; b0i) = diag(Bi), the notation Diag(x)
denotes the diagonalmatrix with xi being the (i, i)thmain diagonal
element, and diag(X) is defined as the column vector with its
components being the diagonal elements of X . Problem (FLP) has
many applications, see, for example, [3,16]. When p ≥ 2, (FLP) is
observed to have local non-global minimizers [15]. In general, it
is shown to be NP-hard [8]. Actually, (FLP) with p = 2 is already
NP-hard [10]. Recently, Depetrini and Locatelli [6] propose a Fully
Polynomial Time Approximation Scheme (FPTAS) for (FLP) when p
is fixed.

In this paper, we first present two new applications of (FSDP).
The first is to maximize the sum of two generalized Rayleigh
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quotients

(RQ) max
x̸=0

xTW1x
xTB1x

+
xTW2x
xTB2x

, (4)

where B1 ≻ 0 and B2 ≻ 0. This problem is initially proposed
by [23,24] with applications in the downlink of a multi-user MIMO
system [13] and the sparse Fisher discriminant analysis in pat-
tern recognition [9,20]. Recently, Nguyen et al. [11] proposed a
parametric approach to solve (RQ) via the following univariate
maximization:

max
µ∈[µ,µ]

q(µ) := µ + max
xT (W1−µB1)x≥0,xT B2x=1

xTW2x,

where µ and µ are the smallest and the largest generalized eigen-
values of thematrix pencil (W1, B1), respectively. For each givenµ,
q(µ) can be evaluated by solving an SDP [11]. However, since g(µ)
is not guaranteed to be unimodal, one cannot expect any nontrivial
complexity analysis on this parametric approach.

The second application is the nonsingular Tikhonov regulariza-
tion of the total least squares problem [2]:

(RLS) min
x∈Rn

∥Ax − b∥2

∥x∥2 + 1
+ ρ∥Lx∥2, (5)

where A ∈ Rm×n, b ∈ Rm, L ∈ Rn×n is nonsingular and ρ is
a positive penalty parameter. We show that both (RQ) and (RLS)
can be equivalently reformulated as (FSDP). To our knowledge, it
is still an open problem whether (RQ) and (RLS) are NP-hard or
polynomial-time solvable problems.

Then, we extend Depetrini and Locatelli’s ϵ-approximation al-
gorithm [6] (which is proposed for (FLP)) to solve (FSDP) and then
prove it is an FPTAS when p + m is fixed. It follows that both (RQ)
and (RLS) have an FPTAS.

The remainder of this paper is as follows. Section 2 reformulates
the two applications, (RQ) and (RLS), as (FSDP). Section 3 estab-
lishes the FPTAS for a class of (FSDP). Conclusions are made in
Section 4.

2. FSDP reformulation of the sum-of-quadratic-ratios applica-
tions

In this section, we reformulate the above sum-of-quadratic-
ratios problems (RQ) (4) and (RLS) (5) as (FSDP).

First, (RQ) can be rewritten as the minimization problem (ig-
noring the constant term)

(RQmin) min
xT x=1

r(x) :=
xT (τB1 − W1)x

xTB1x
+

xT (τB2 − W2)x
xTB2x

, (6)

where τ is a positive scalar such that τB1−W1 ≻ 0 and τB2−W2 ≻

0, the constraint xT x = 1 is added to keep away from x = 0
by noting that all the quadratic numerators and denominators are
homogeneous. By lifting xT (·)x to tr((·)X), (RQmin) (6) is further
equivalent to

min
X⪰0,tr(X)=1,rank(X)=1

tr((τB1 − W1)X)
tr(B1X)

+
tr((τB2 − W2)X)

tr(B2X)
.

Removing the rank constraint yields the FSDP relaxation:

(RQFSDP) min R(X) :=
tr((τB1 − W1)X)

tr(B1X)

+
tr((τB2 − W2)X)

tr(B2X)
s.t. tr(X) = 1, X ⪰ 0.

Moreover, we can show that the FSDP relaxation is tight.

Theorem 2.1. The FSDP relaxation (RQFSDP) is equivalent to (RQmin)
in the sense that both optimal values are equal and an optimal solution
of (RQmin) can be recovered in polynomial time from that of (RQFSDP).

Proof. Let v(·) be the optimal value of problem (·). According to
the derivation of (RQFSDP), we have

v(RQFSDP) ≤ v(RQmin). (7)

Let X̃ be any feasible solution of (RQFSDP). Define

t̃1 =
tr((τB1 − W1 )̃X)

tr(B1X̃)
, t̃2 =

tr((τB2 − W2 )̃X)
tr(B2X̃)

.

Then, it holds that R(̃X) = t̃1 + t̃2 and

tr((τB1 − W1 − t̃1B1 )̃X) = 0, (8)

tr((τB2 − W2 − t̃2B2 )̃X) = 0. (9)

According to the rank-one decomposition theorem due to Sturm
and Zhang [17], it follows from (8) that there exists nonzero vectors
p1, . . . , pr (obtained in polynomial time) such that

X̃ =

r∑
i=1

pipTi (10)

and

pTi (τB1 − W1 − t̃1B1)pi = 0, i = 1, . . . , r, (11)

where r is the rank of X̃ . Substituting (10) into (9) yields
r∑

i=1

pTi (τB2 − W2 − t̃2B2)pi = 0.

Then, there is an index k ∈ {1, . . . , r} such that

pTk (τB2 − W2 − t̃2B2)pk ≤ 0. (12)

Since pk ̸= 0, we can define x̃ = pk/
√
pTkpk. Thus, x̃

T x̃ = 1.
According to (11) and (12), we have

x̃T (τB1 − W1 − t̃1B1 )̃x = 0, x̃T (τB2 − W2 − t̃2B2 )̃x ≤ 0.

It implies that

r (̃x) =
x̃T (τB1 − W1 )̃x

x̃TB1̃x
+

x̃T (τB2 − W2 )̃x
x̃TB2̃x

≤ t̃1 + t̃2
= R(̃X). (13)

Therefore, we have

v(RQmin) ≤ v(RQFSDP).

Combined with (7), it holds that v(RQmin) = v(RQFSDP). Conse-
quently, v(RQFSDP) has an optimal solution, denoted by X∗, since
v(RQmin) is attainable. Based on X∗, applying the above procedure
for generating x̃ from X̃ , we can obtain an optimal solution of
(RQmin) in polynomial time. □

Now, we consider (RLS) (5), which has an equivalent FSDP-
reformulation as follows:

(RLSFSDP) min
tr(ATAX) − 2bTAx + ∥b∥2

tr(X) + 1
+ ρtr(LT LX)

s.t.
(
X x
xT 1

)
⪰ 0. (14)
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