
Operations Research Letters 46 (2018) 109–115

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Continuous-time constrained stochastic games with average criteria
Wenzhao Zhang a,*, Binfu Wang a, Dewang Chen a,b

a College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, PR China
b Academy of Rail Transport, Fuzhou University, Fuzhou 350108, PR China

a r t i c l e i n f o

Article history:
Received 29 November 2016
Received in revised form 8 November 2017
Accepted 8 November 2017

Keywords:
Nonzero-sum game
Constrained Nash equilibria
Average criteria
Vanishing discount method

a b s t r a c t

In this paper, we consider the continuous-time nonzero-sum stochastic games under the constrained
average criteria. The state space is denumerable and the action space of each player is a general
Polish space. The transition rates, reward and cost functions are allowed to be unbounded. The main
hypotheses in this paper include the standard drift conditions, continuity-compactness condition and
some ergodicity assumptions. By applying the vanishing discount method, we obtain the existence of
stationary constrained average Nash equilibria.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Constrained stochastic games constitute an important class of
stochastic gameswith applications inmany areas including queue-
ing system, telecommunications systems, etc.; see, for instance,
[2,14] and the reference therein. As far as our knowledge goes, the
existing works for the nonzero-sum constrained stochastic games
are mostly for the discrete-time case; see, for instance, [1,2,14].
More precisely, [1] studies the constrained stochastic games under
the discounted and average cost criteria with finite state and finite
action spaces. The constrained stochastic games with discounted
cost criteria are also considered in [2] within the framework of
countable state space and Borel action spaces. Under adequate
conditions, [14] extends the result in [1] to the constrained average
games with denumerable states. For continuous-time constrained
game, the only work [15] considers the discounted cost criteria in
denumerable state space.

In this paper, we study the continuous-time constrained game
under the average criteria. The state space is denumerable but the
action spaces are all Polish spaces. The transition rates, cost and
reward functions may be unbounded from above and from below.
Our main interest is to show the existence of constrained Nash
equilibria out of the class of history-dependent strategy profiles.
Roughly speaking, we want to obtain an equilibrium such that no
single player can increase his own expected average reward by
changing a strategy which satisfies constraints, while the other
player continues to follow their original strategies. To this end,
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we use a refinement of classical assumptions and several technical
results that have been introduced for the study of continuous-
time Markov decision processes (CTMDPs) in [3,6,11]. First, we
construct a sequence of auxiliary constrained discounted game
models, in which the existence of constrained discounted Nash
equilibria is proved by the new finite-state approximation tech-
nique in [3] under weaker condition than those in [15]. Next,
we prove the limiting equilibria of constrained discounted Nash
equilibria, as the discount factors tend to zero, are stationary
constrained average Nash equilibria by means of the vanish-
ing discount technique in [6,11]. The vanishing discount tech-
nique has been extensively applied in Markov decision processes
(see [6,7,9,11,13]) and in stochastic games (see [5,14]).

The rest of the paper is organized as follows. In Section 2,
we introduce the constrained average games we are concerned
with. In Section 3, we present the auxiliary constrained discounted
stochastic games. Moreover, we briefly recall some approximation
properties of expected discounted and average reward/cost. We
state these results only for the sake of completeness. In Section 4,
we prove the existence of stationary constrained average Nash
equilibria which can be viewed as the limits of stationary con-
strained Nash equilibria of the auxiliary constrained discounted
game models. Some proofs of the auxiliary results are collected in
Appendix A.

2. The game model

Notation. If X is a Borel space, we denote by B(X) its Borel
σ -algebra and by P(X) the set of all probability measures on B(X)
endowed with the topology of weak convergence. I stands for the
indicator function, and δ{x}(·) is the Dirac measure concentrated at
x. Define R+ := (0, ∞) and R0

+
:= [0, ∞).
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Now, we introduce the following constrained stochastic game
model G:{
S, A, B, {A(i), B(i)|i ∈ S}, r1, r2, (c1, θ1), (c2, θ2), q, γ

}
, (2.1)

where the state space S := {0, 1, . . .} (i.e. the set of nonnegative
integers) endowed with the discrete topology. The action spaces
A for player 1 and B for player 2 are assumed to be Polish spaces
endowed with the Borel σ -algebra B(A) and B(B), respectively. For
each i ∈ S, A(i) and B(i) are the nonempty measurable subsets of
A and B, respectively. Let K :=

{
(i, a, b)|i ∈ S, a ∈ A(i), b ∈ B(i)

}
,

K 1
:=

{
(i, a)|i ∈ S, a ∈ A(i)

}
, K 2

:=
{
(i, b)|i ∈ S, b ∈ B(i)

}
. q

denotes the transition rates satisfying that

• q(j|i, a, b) ≥ 0 for all (i, a, b) ∈ K and i ̸= j;
• q(j|i, a, b) is measurable in (a, b) ∈ A(i) × B(i) for each fixed

i, j ∈ S;
•

∑
j∈Sq(j|i, a, b) = 0 for each (i, a, b) ∈ K, and q∗(i) :=

supa∈A(i),b∈B(i) − q(i|i, a, b) < ∞ for each i ∈ S.

For each k = 1, 2, the one-stage reward rk and the one-stage costs
ck are real-valued functions on K. The objective of each player
k is to maximize the expected average reward corresponding to
rk, subject to the constraint that the expected average cost cor-
responding to ck does not exceed the real number θ k. Finally, γ

denotes the initial distribution.
Next, we briefly recall the construction of the stochastic basis

(Ω,F, {Ft}t≥0, Pπ1,π2
γ ). Let i∞ ̸∈ S be an isolated point and S∗

:=

S
⋃

{i∞}. For each n ≥ 0, Ωn := S × (R+ × S)n × ({∞} × {i∞})∞,
Ω := (S×(R+×S)∞)∪

⋃
∞

n=0Ωn. Thus, we obtain the sample space
(Ω,F), where F is the standard Borel σ -algebra. For each m ≥ 1
and each sampleω = (i0, θ1, i1, . . . , θn−1, in−1, . . .) ∈ Ω , we define
some maps on Ω as follows: T0(ω) := 0, X0(ω) := i0, Θm(ω) := θm,
Tm(ω) :=

∑m
n=1θn, T∞(ω) := limn→∞Tm(ω), Xm(ω) := im. Here,

Θm, Tm, Xm denote the sojourn time, jumpmoment and the state of
the process on the interval [Tm, Tm+1), respectively. Let us define a
process {ξt , t ≥ 0} on (Ω,F) by

ξt (ω) :=

∑
m≥0

I{Tm(ω)≤t<Tm+1(ω)}im + I{T∞(ω)≤t}i∞ for each ω ∈ Ω.

In what follows, hn(ω) := (i0, θ1, i1, . . . , θn, in) is the n-component
internal history, the argument ω = (i0, θ1, i1, . . . , θn, in, . . .) ∈ Ω

is often omitted. Since we do not plan to consider the process after
T∞, i∞ is regarded as absorbing. Let us define A(i∞) := a∞ and
B(i∞) := b∞, where a∞ ̸∈ A and b∞ ̸∈ B are two isolated points,
A∗

:= A ∪ {a∞}, B∗
:= B ∪ {b∞} and q(i∞|i∞, a∞, b∞) := 0. Let

Ft := σ ({Tm ≤ s, Xm = j} : j ∈ S, s ≤ t,m ≥ 0) be the
internal history to time t for the game model G, Fs− :=

⋁
t<sFt ,

P := σ (C × {0}(C ∈ F0), C × (s, ∞)(C ∈ Fs−, s > 0)) which
denotes the predictable σ -algebra on Ω × R0

+
.

Below we introduce the concept of strategies.

Definition 2.1.

(i) A P-measurable transition probability function π1(·|ω, t) on
(A∗,B(A∗)), concentrated on A(ξt−(ω)), is called a randomized
history-dependent strategy for player 1.

(ii) A randomized history-dependent strategy π1 for player 1 is
said to be randomized stationary if there exists a stochastic
kernel ϕ1 on A∗ given S∗ such that π1(·|ω, t) = ϕ1(·|ξt−(ω)).
Such strategies are denoted as ϕ1.

With set B∗ in lieu of set A∗, we define similarly the randomized
history-dependent strategy and randomized stationary strategy
for player 2, denoted by π2 and ϕ2, respectively. We denote by Π k

the class of randomized history-dependent strategies for player k,
and by Φk the class of randomized stationary strategies for player

k. For each strategy profile π := (π1, π2) ∈ Π1
× Π2, and strategy

π ′k
∈ Π k, we denote by [π−k, π ′k

] the strategy profile obtained
from π by replacing π k with π ′k.

Remark 2.1. Unlike most of works on continuous-time stochas-
tic game restricted in the set of all Markov strategies, we take
history-dependent strategies into consideration. However, we do
not assume that the players choose their action based on the
observation of previous actions here. Proposition 1 of [10] shows
that the strategy of each player should be independent on his/her
own previous actions, as otherwise, there are strategies that do
not define a play. Meanwhile, we assume here that each player
cannot observe the other player’s actions, which is frequently used
in game theory.

Now, let us briefly recall the construction of Pπ1,π2
γ . Let H0 := S

and Hm := S × ((0, ∞] × S∗)m be the set of histories for each
m ≥ 1. For each strategy profile (π1, π2) ∈ Π1

× Π2, according to
Theorem 4.19 in [8], (π1, π2) has the following form:

π1(da|ω, t) = δ{a∞}(da)I{t≥T∞} +

∞∑
m=0

I{Tm<t≤Tm+1}

× π1
m(da|i0, θ1, . . . , im, t − Tm),

π2(db|ω, t) = δ{b∞}(db)I{t≥T∞} +

∞∑
m=0

I{Tm<t≤Tm+1}

× π2
m(db|i0, θ1, . . . , im, t − Tm),

where π1
m (resp., π2

m) is some stochastic kernel on A (resp., B) given
Hm ×R+ for eachm ≥ 0. Then, for eachm ≥ 0, t ≥ 0 and hm ∈ Hm,
let us define

Λm,π1,π2
(j|hm, t) :=

∫
A
π1
m(da|hm, t)

∫
B
π2
m(db|hm, t)

× q(j \ {im}|im, a, b),

where q(j\{im}|im, a, b) := q(j|im, a, b)I{j̸=im}, andΛm,π1,π2
(S|hm, t)

:=
∑

j∈SΛ
m,π1,π2

(j|hm, t). The marginal of Pπ1,π2
γ on H0 coincides

with γ . Suppose that the measure Pπ1,π2
γ on Hm has been con-

structed, the marginal of Pπ1,π2
γ on Hm+1 is defined by

Pπ1,π2

γ (Γ Hm × (dt, j)) :=

∫
Γ Hm

Pπ1,π2

γ (dhm)I{Xm∈S}Λ
m,π1,π2

(j|hm, t)

× e−
∫ t
0 Λm,π1,π2

(S|hm,v)dvdt

Pπ1,π2

γ (Γ Hm × (∞, i∞)) :=

∫
Γ Hm

Pπ1,π2

γ (dhm)
{
I{Xm=i∞} + I{Xm∈S}

× e−
∫

∞

0 Λm,π1,π2
(S|hm,v)dv}, (2.2)

for each Γ Hm ∈ B(Hm). According to the well known Tulcea’s
Theorem, there exists a unique probability measure Pπ1,π2

γ on
(Ω,F) such that its marginal onto Hm satisfies (2.2). Hence, we get
a stochastic basis (Ω,F, {Ft}t≥0, Pπ1,π2

γ ), which is always assumed
to be complete. Expectations with respect to Pπ1,π2

γ is denoted as

Eπ1,π2
γ . When γ (i) = 1, we write Pπ1,π2

i for Pπ1,π2
γ and Eπ1,π2

i for
Eπ1,π2

γ , respectively.
Roughly speaking, the game is played as follows. At each time t ,

the players can only observe the current state, and the past states
and jump moments. If Tn < t ≤ Tn+1 for some n, both players in-
dependently and simultaneously choose actions a ∈ A(in) and b ∈

B(in) according to π1
n (·|hn, t − Tn) and π2

n (·|hn, t − Tn), respectively.
Then, the following happen: (1) player k (k = 1, 2) has reward and
cost at the rate

∫
A

∫
B r

k(in, a, b)π1
n (da|hn, t−Tn)π2

n (db|hn, t−Tn) and
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