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Abstract

In the literature on the quadratic 0-1 knapsack problem, several alternative ways have been given to represent the knap-
sack constraint in the quadratic space. We extend this work by constructing analogous representations for arbitrary
linear inequalities for arbitrary non-convex mixed-integer quadratic programs with bounded variables.
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1. Introduction

It has long been known that one can obtain useful re-
formulations of NP-hard optimisation problems by in-
troducing additional variables representing products or
squares of original variables. This idea has been ap-
plied to, e.g., 0-1 linear programs [18, 22], 0-1 quadratic
programs [1, 11, 19], non-convex quadratic programs
[7, 23], non-convex quadratically constrained quadratic
programs [12, 21], and many other problems.

The presence of additional variables leads to some
flexibility in the choice of representing linear con-
straints. In their paper on semidefinite programming re-
laxations of the 0-1 quadratic knapsack problem (QKP),
Helmberg et al. [16] consider three different representa-
tions of the knapsack constraint. In his thesis, Helm-
berg [14], considers also a fourth representation. The
purpose of this note is to extend this work, by con-
structing analogous representations for arbitrary linear
inequalities for arbitrary mixed-integer quadratic pro-
grams (MIQPs). The only restriction is that all variables
involved in the inequality must be explicitly bounded.

The paper has a very simple structure. The literature
is reviewed in Section 2, and the new results are in Sec-
tion 3.
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2. Literature Review

We now give a brief overview of the relevant litera-
ture. We cover general quadratic 0-1 programs in Sub-
section 2.1, the QKP in Subsection 2.2, and bounded
MIQP in Subsection 2.3.

2.1. Quadratic 0-1 programming

A quadratic 0-1 program (0-1 QP) with n variables
and m constraints is a problem of the form

max
{
xT Qx : Ax ≤ b, x ∈ {0, 1}n

}
,

where Q = {qi j} ∈ Qn×n, A ∈ Qm×n and b ∈ Qm. It
is well known that 0-1 QPs are strongly NP-hard, yet
have many important applications (see, e.g., [4, 10]).

One can convert 0-1 QPs into 0-1 linear programs us-
ing a standard linearisation trick, due to Fortet [11]. We
introduce for all 1 ≤ i < j ≤ n the binary variable xi j,
representing the product xix j. To simplify notation, we
identify x ji with xi j. The 0-1 QP is then formulated as:

max
∑

1≤i≤n qiixi +
∑

1≤i< j≤n(qi j + q ji)xi j

s.t. Ax ≤ b

xi j ≤ xi (1 ≤ i ≤ n, j , i)
xi + x j ≤ xi j + 1 (1 ≤ i < j ≤ n)

xi ∈ {0, 1}n (1 ≤ i ≤ n)
xi j ∈ {0, 1}n (1 ≤ i < j ≤ n).
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