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a b s t r a c t

We study a class of quadratic stochastic programs where the distribution of random variables has
unknown parameters. A traditional approach is to estimate the parameters using a maximum likelihood
estimator (MLE) and to use this as input in the optimization problem. For the unconstrained case,we show
that an estimator that shrinks the MLE towards an arbitrary vector yields a uniformly better risk than the
MLE. In contrast, when there are constraints, we show that the MLE is admissible.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In practice, optimization problems often involve uncertain ele-
ments arising from a random process. See Birge and Louveaux [3]
for an introduction to stochastic programming. Samples from the
underlying random process are used to estimate unknown param-
eters of the distribution of the uncertain elements. We study a set
up where the estimation process is performed first, and its output
estimator is used as an input for the optimization problem. It is
natural to use the maximum likelihood estimator (MLE) of the
parameters. But in some cases one may obtain better solutions
to the optimization problem by replacing the MLE by a shrinkage
estimator. For example in portfolio optimization, an investor may
want to construct a portfolio of risky assets that maximizes ex-
pected return against risk (Markowitz [13]). When historical data
on the asset returns are used to estimate the expected returns,
Jorion [8] recommends to shrink the vector of sample averages
towards a grand average, and to use this shrunk estimator in the
Markowitz optimization problem to obtain better portfolios. We
address the question of where this shrinkage idea fits in the opti-
mization literature, focusing on the impact of constraints.

2. Problem description

Consider the following parametric stochastic optimization
problem:

max
y∈Y

Ex|θ[f (x, y)]. (1)
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In (1), x represents a vector of random variables in Rn that has
a known probability distribution with joint density G(x|θ) where
θ represents a vector of unknown parameters of the distribution.
Vector y represents decision variables inRm that belong to a closed
set Y ⊆ Rm. The expectation Ex|θ[.] is taken with respect to
the distribution of the random variables x given the vector θ of
parameters. Writing Ex|θ[f (x, y)] = F(θ, y), we refer to F(θ, y)
as a parametric objective function. Since F(θ, y) is a function of θ

and y, its optimal solution y∗(θ) and its optimal value F(θ, y∗(θ))
are both functions of θ. This setting suggests combining statistical
techniques with optimization to achieve desirable end-solutions;
see Lim, Shanthikumar and Shen [11] for an investigation.

A finite number T of i.i.d. observations {xt}t∈[T ] (obtained from
computer simulation, historical data, prediction, etc.) is available
for the random variables x. Throughout this paper, we write {xt}
as a shorthand for the collection of observations. From a statistical
point of view, the data is used to obtain an approximate solution
(estimator) ŷ({xt}) for the true optimal solution (estimand) y∗(θ). In
the remainder, we use y∗ as a shorthand for y∗(θ), and we use ŷ as
a shorthand for ŷ({xt}). Our goal in this paper is to obtain ‘‘good’’
estimators ŷ for the optimal solution y∗ of problem (1).

The quality of the solution estimator relative to the optimal
solution is measured by the loss function

L(y∗, ŷ) = F(θ, y∗) − F(θ, ŷ). (2)

A smaller loss indicates a better estimator. Since ŷ is a solution to
(1), it belongs to Y , and therefore F(θ, ŷ) ≤ F(θ, y∗).

The loss function defined in (2) is a random quantity since
F(θ, ŷ) is a function of the observations {xt} (because of the es-
timator ŷ). Therefore, to evaluate the overall performance of the
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estimator ŷ, an averaging measure for the loss function is defined.
This measure is referred to as the risk

R(y∗, ŷ) = E{xt }|θ[L(y∗, ŷ)], (3)

where the expectation is taken over all realizations of the observa-
tions with respect to the joint distribution G({xt}|θ) computed as∏T

t=1G(x
t
|θ) as the observations are i.i.d.

It is clear that the risk R(y∗, ŷ) is a function of the unknown
parameters θ. The treatment of the risk is different depending on
whether the unknown parameters of the model are assumed to
be random or fixed. This key assumption on the model parame-
ters gives rise to two major statistical frameworks: Bayesian and
frequentist. In this paper, we investigate the risk function under
the frequentist framework where parameters are viewed as fixed
numbers that are not known to the modeler, and they have the
domain Θ = Rn.

3. Admissibility

A popular criterion under the frequentist framework is ad-
missibility, a desirable property of estimators that seeks superior
relative risks. We focus on studying estimators with this property
throughout this paper.

An estimator ŷ1 strictly dominates another estimator ŷ2 if
R(y∗, ŷ1) ≤ R(y∗, ŷ2) for all values of the parameters θ, with strict
inequality for some values of θ. An estimator ŷ1 is inadmissible, if
there exists an estimator ŷ2 that strictly dominates it. Otherwise,
it is admissible. It is a common-sense rule in decision making to
avoid inadmissible estimators. Identifying admissible estimators
and constructing dominating estimators for inadmissible ones are
two important research directions in the theory of point estima-
tion; see [10]. Our goal in this paper is to pursue these directions
in optimization.

Let θ̂ (as a shorthand for θ̂({xt})) be an estimator of θ as a
function of the observations. As the traditional and most common
technique to obtain an estimator for the optimal solution of (1),
we study the following scheme: Use θ̂ in place of θ, and then solve
maxy∈YF(θ̂, y). The optimizer of this problem is a solution estima-
tor ŷθ̂ of y

∗. One of themost commonandnatural choices for θ̂ is the
maximum likelihood estimator (MLE) due to its several attractive
features. For instance, under the assumption that the distribution
G is normal, theMLE for themeanµ is the samplemean x̄ =

∑T
t=1x

t

T
which is unbiased, invariant, efficient and consistent. The question
of interest is whether the solution estimator ŷx̄ obtained from the
MLE x̄ is admissible, and if it is not, how to find a solution estimator
that dominates it.

Studying admissibility of a given estimator and designing dom-
inating estimators are hard tasks even under simple distributional
settings and problem structures. The most common statistical set-
ting to study such properties is for the distribution to be normal
and for the loss function to be the squared error; see [10] Sec. 5.
Assume that x ∼ N (x|µ, I) and T = 1. Consider the squared error
loss function L(µ, µ̂) = ∥µ − µ̂∥

2 which measures the Euclidean
distance between the unknown parameter µ and its estimator µ̂.
Blyth [4] showed that, under the squared error loss, the MLE is
admissiblewhen n = 1 and n = 2. Stein [14] stunned the statistical
world by showing that x̄ is inadmissible when n ≥ 3. In particular,
James and Stein [7] proved that x̄ is uniformly dominated by an
estimator of the form x̃ = ρx0 + (1 − ρ)x̄ where ρ =

(n−2)
∥x0−x̄∥2

and x0 is an arbitrary target vector in Rn. Baranchik [1] improved
the James–Stein estimator by modifying the factor ρ to ρ+

=

min{ρ, 1}. This estimator is referred to as the shrinkage estimator,
since it shrinks the MLE x̄ towards the target vector x0.

The above statistical results are established in the space of pa-
rameters under a loss function L(µ, µ̂) that measures the distance

between the estimator µ̂ and the parameter µ. For optimization
problems, on the other hand, we are interested in the space of
decision variables, where the loss function L(y∗, ŷ) measures the
difference in the objective value between the solution estimator ŷ
and the optimal solution y∗. The question of interest is how does
a shrinkage solution estimator ŷx̃ compare to the MLE solution
estimator ŷx̄?We investigate this question for two different classes
of convex stochastic problems, one with a quadratic term in the
objective and the other with a quadratic term in the constraint. To
keep the analysis tractable, we assume that the distribution of the
random variables is normal and its covariance matrix is known.

4. Convex quadratic objective

In this section we show that a classical shrinkage result in
statistics extends to a certain family of stochastic programs.

Proposition 1. Assume that x ∼ N (µ, I), and that L(y∗, ŷµ̂) =

(µ̂−µ)⊺Qµ(µ̂−µ)where Qµ ⪰ 0 for all µ ∈ Rn. Then the shrinkage
solution estimator ŷx̃ strictly dominates the MLE solution estimator
ŷx̄ for any x̃ = ρx0 + (1 − ρ)x̄ where ρ =

c(∥x̄−x0∥
2)

T∥x̄−x0∥2
, provided

(i) 0 < c(.) < infµ∈Rn2 tr(Qµ)
λmax(Qµ) − 4, and (ii) the function c(.) has

nonnegative derivative. In the above definition, tr(Qµ) and λmax(Qµ)
represent the trace and the maximum eigenvalue of Qµ, respectively.

Proof. We show the result for x0 = 0. The argument for other
choices of x0 follows through a translation of the origin. Fix µ ∈

Rn. Our goal is to prove that RF (y∗, ŷx̃) < RF (y∗, ŷx̄). Since
both estimators are functions of x̄, we replace the simultaneous
expectation E{xt }|θ in the risk calculation (3) with Ex̄|µ, which is
the expectation over the sample mean vector x̄ that has normal
distribution N (µ, 1

T I). We write that

R(y∗, ŷx̃)
= Ex̄|µ

[
(x̃ − µ)⊺Qµ(x̃ − µ)

]
= Ex̄|µ

[
(x̄ −

c(∥x̄∥2)
T∥x̄∥2 x̄ − µ)⊺Qµ(x̄ −

c(∥x̄∥2)
T∥x̄∥2 x̄ − µ)

]
= R(y∗, ŷx̄) + Ex̄|µ

[
c2(∥x̄∥2)
T 2∥x̄∥4 x̄⊺Qµx̄

]
− 2Ex̄|µ

[
c(∥x̄∥2)
T∥x̄∥2 x̄⊺Qµ(x̄ − µ)

]
,

where the second equality follows from the definition of x̃ =

(1 −
c(∥x̄∥2)
T∥x̄∥2 )x̄ when x0 = 0, and the third equality holds since

Ex̄|µ
[
(x̄ − µ)⊺Qµ(x̄ − µ)

]
= R(y∗, ŷx̄). Next, we compute the last

bracket in the above relation. Define x̄−i to be the subvector of x̄
without the ith coordinate, and let c ′(.) denote the derivative of
c(.). We write that

Ex̄|µ

[
c(∥x̄∥2)
T∥x̄∥2 x̄⊺Qµ(x̄ − µ)

]

=
1
T

n∑
i=1

Ex̄|µ

⎡⎣ c(∥x̄∥2)
∥x̄∥2

n∑
j=1

x̄jqji(x̄i − µi)

⎤⎦
=

1
T

n∑
i=1

Ex̄−i|µ−iEx̄i|µi

⎡⎣ c(∥x̄∥2)
∥x̄∥2

n∑
j=1

x̄jqji(x̄i − µi)

⎤⎦
=

1
T 2

n∑
i=1

Ex̄−i|µ−iEx̄i|µi⎡⎣ c(∥x̄∥2)
∥x̄∥2 qii + 2

n∑
j=1

x̄jqjix̄i
∥x̄∥4

(
c ′(∥x̄∥2) − c(∥x̄∥2)

)⎤⎦
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